Книга: Общая химия

98. Химические источники электрической энергии.

<<< Назад
Вперед >>>

98. Химические источники электрической энергии.

Мы ужо знаем, что при любой окислительно-восстановительной реакции происходит переход электронов от восстановителя к окислителю.

- 264 -

Так, при опускании цинковой пластинки в раствор сульфата меди происходит реакция


Здесь восстановитель — цинк — отдает электроны. Эта полуреакция выражается уравнением:


Окислитель — ион меди — принимает электроны. Уравнение этой полуреакции имеет вид:


В рассматриваемом примере обе полуреакции протекают в месте соприкосновения цинка с раствором, так что электроны непосредственно переходят от атомов цинка к ионам меди. Можно, однако, осуществить эту реакцию таким способом, что окислительная и восстановительная полуреакции окажутся пространственно разделенными, а электроны будут переходить от восстановителя к окислителю не непосредственно, а по проводнику электрического тока — по внешней цепи. Этот направленный поток электронов представляет собою электрический ток. При таком осуществлении окислительно-восстановительной реакции ее энергия будет превращена в электрическую энергию, которую можно использовать, включив во внешнюю цепь устройство, потребляющее электрическую энергию (например, электронагревательный прибор, электрическую лампу и т. п.).

Устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую энергию, называются гальваническими элементами. Их называют также химическими источниками электрической энергии (сокращенно ХИЭЭ) или химическими источниками тока.

В технике гальваническими элементами принято называть только ХИЭЭ, в которых протекают практически необратимые реакции. Такие ХИЭЭ обычно нельзя перезаряжать: они предназначены для однократного использования (в один или несколько приемов). ХИЭЭ, в которых протекают практически обратимые реакции, называют аккумуляторами: их можно перезаряжать и использовать многократно.

Действие любого гальванического элемента основано на протекании в нем окислительно-восстановительной реакции. В простейшем случае гальванический элемент состоит из двух пластин или стержней, изготовленных из различных металлов и погруженных в раствор электролита. Такая система делает возможным пространственное разделение окислительно-восстановительной реакции: окисление протекает на одном металле, а восстановление — на другом. Таким образом, электроны передаются от восстановителя к окислителю по внешней цепи.

- 265 -

Рассмотрим в качестве примера медно-цинковый гальванический элемент, работающий за счет энергии приведенной выше реакции между цинком и сульфатом меди (рис. 82). Этот элемент (элемент Якоби — Даниэля) состоит из медной пластины, погруженной в раствор сульфата меди (медный электрод), и цинковой пластины, погруженной в раствор сульфата цинка (цинковый электрод). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой, изготовленной из пористого материала.

При работе элемента, т. е. при замкнутой цепи, цинк окисляется: на поверхности его соприкосновения с раствором атомы цинка превращаются в ионы и, гидратируясь, переходят в раствор. Высвобождающиеся при этом электроны движутся по внешней цепи к медному электроду. Вся совокупность этих процессов схематически изображается уравнением полуреакции, или электрохимическим уравнением:


На медном электроде протекает восстановление ионов меди. Электроны, приходящие сюда от цинкового электрода, соединяются с выходящими из раствора дегидратирующимися ионами меди; образуются атомы меди, выделяющиеся в виде металла. Соответствующее электрохимическое уравнение имеет вид:


Суммарное уравнение реакции, протекающей в элементе, получится при сложении уравнений обеих полуреакций. Таким образом, при работе гальванического элемента электроны от восстановителя переходят к окислителю по внешней цепи, на электродах идут электрохимические процессы, в растворе наблюдается направленное движение ионов.

Направление движения ионов в растворе обусловлено протекающими у электродов электрохимическими процессами. Как уже сказано, у цинкового электрода катионы выходят в раствор, создавая в нем избыточный положительный заряд, а у медного электрода раствор, наоборот, все время обедняется катионами, так что здесь раствор заряжается отрицательно. В результате этого создается электрическое поле, в котором катионы, находящиеся в растворе (Cu2+ и Zn2+) , движутся от цинкового электрода к медному, а анионы SO42- в обратном направлении. В итоге жидкость у обоих электродов остается электронейтральной. Схема движения электронов и ионов при работе медно-цинкового элемента показана на рис. 83.

Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом. В медно-цинковом элементе цинковый электрод является анодом, а медный — катодом.

- 266 -


Рис. 82. Схема медно-цинкового гальванического элемента.


Рис. 83. Схема движения ионов и электронов при работе медно-цинкового гальванического элемента.

Протекающая в гальваническом элементе окислительно-восстановительная реакция представляет собой сложный процесс. Она включает собственно электрохимические стадии (превращения атомов, ионов или молекул на электродах), перенос электронов, перенос ионов. Все эти стадии сопряжены между собой и протекают с одной и той же скоростью; число электронов, которые за единицу времени отдает цинк, равно числу электронов, принимаемых за это же время ионами меди. Поэтому скорость реакции, протекающей в гальваническом элементе, пропорциональна количеству электричества, перенесенного по цепи в единицу времени, т. е. силе тока в цепи.

Электрический ток, протекающий по внешней цепи гальванического элемента, может производить полезную, работу. Но работа, которую можно выполнить за счет энергии химической реакции, зависит от ее скорости: она максимальна при бесконечно медленном — обратимом — проведении реакции (см. § 67). Следовательно, работа, которую можно произвести за счет реакции, протекающей в гальваническом элементе, зависит от величины отбираемого от него тока. Если, увеличивая сопротивление внешней цепи, уменьшать ток до бесконечно малого значения, то и скорость реакции в элементе тоже будет бесконечно малой, а работа - максимальной. Теплота, выделяемая во внутренней цепи элемента, будет при этом, наоборот, минимальна.

Работа электрического тока выражается произведением количества прошедшего по цепи электричества на напряжение. В медно-цинковом элементе при окислении одного эквивалента цинка и Одновременном восстановлении одного эквивалента ионов меди по цепи пройдет количество электричества, численно равное одному фарадею ( F=96485 Кл/моль), так что полезная работа A', которую ток может совершить, будет равна:

- 267 -

A' = FV

где V — напряженке между полюсами элемента.

Но поскольку эта работа зависит от силы тока, то и напряжение между полюсами элемента тоже зависит от силы тока (F - величина постоянная). В предельном случае, отвечающем обратимому протеканию реакции, напряжение будет максимальным. Максимальное значение напряжения гальванического элемента, соответствующее обратимому протеканию реакции, называется электродвижущей силой (э. д. с.) данного элемента.

Для этого предельного случая полезная работа, производимая электрическим током в медно-цинковом элементе при взаимодействии одного эквивалента цинка с одним эквивалентом ионов меди, выразится уравнением


где E ? Vмакс - э. д. с. элемента.

Ясно, что при взаимодействии одного моля атомов цинка с одним молем ионов меди уравнение примет вид:


В общем случае при растворении (или выделении) одного моля вещества, ионы которого имеют заряд, равный z, максимальная полезная работа связана с э. д. с. уравнением:

Aмакс = zFE

При постоянных температуре и давлении максимальная полезная работа реакции равна взятому с обратным знаком изменению энергии Гиббса ?G (см. § 67). Отсюда:

?G = -zFE

Если концентрации (точнее говоря, активности) веществ, участвующих в реакции, равны единице, т. е. если соблюдаются стандартные условия, то э.д.с. элемента называется его стандартной электродвижущей силой и обозначается E°. При этом последнее уравнение принимает вид:

?G° = -zFE°

Учитывая, что стандартное изменение энергии Гиббса реакции связано с ее константой равновесия (см. § 68) соотношением

?G° = -RT ln K

получим уравнение, связывающее стандартную э. д. с. с константой равновесия реакции, протекающей в гальваническом элементе:

RT ln K = zFE°

- 268 -

Измерения электродвижущих сил можно производить с высокой точностью. Эти измерения представляют собой один из наиболее точных методов определения стандартных энергий Гиббса, а следовательно, и констант равновесия окислительно-восстановительных реакций в растворах.

Окислительно-восстановительная реакция протекает в гальваническом элементе несмотря на то, что окислитель и восстановитель непосредственно друг с другом не соприкасаются. Для того чтобы понять, как это происходит, как возникает электродвижущая сила при пространственном разделении процессов окисления и восстановления, рассмотрим более детально явления, происходящие на границах раздела фаз в гальваническом элементе.

Прямые опыты с применением радиоактивных индикаторов Показывают, что если привести металл (М) в контакт с раствором его соли, то ионы металла (Mz+) переходят из металлической фазы в раствор и из раствора в металл. Поскольку энергетическое состояние ионов в этих фазах неодинаково, то в первый момент после установления контакта ионы металла переходят из металла в раствор и в обратном направлении с различной скоростью. Если преобладает переход ионов из металлической фазы в раствор, то раствор приобретает положительный заряд, а металлический электрод заряжается отрицательно. По мере увеличения этих зарядов переход катионов в одноименно заряженный раствор затрудняется, так что скорость этого процесса уменьшается, скорость же перехода катионов из раствора на отрицательно заряженный электрод возрастает. В результате скорости обоих процессов выравниваются и между металлом и раствором устанавливается равновесие:


При этом металлический электрод оказывается заряженным отрицательно, а раствор — положительно. Если при установлении контакта металл — раствор скорость перехода катионов из металла в раствор была меньше, чем скорость их перехода в обратном направлении, то между электродом и раствором также устанавливается равновесие; но в этом случае электрод заряжается положительно, а раствор — отрицательно.

В элементе Якоби — Даниэля соответствующие равновесия устанавливаются между цинковым электродом и раствором сульфата цинка


а также между медным электродом и раствором сульфата меди:


В этом элементе имеются еще две границы раздела фаз: между растворами сульфатов цинка и меди, а также медью и цинком (см. рис. 82). Граница между растворами не оказывает существенного влияния ни на величину э. д. с., ни на протекание реакции при работе элемента.

Что же касается границы между металлами, то через нее могут проходить не ионы, как в случае границы металл— раствор, а электроны. И здесь вследствие неодинакового энергетического состояния электронов в меди и в цинке первоначальные скорости перехода электронов из одного металла в другой и в обратном направлении различны. Однако и в этом случае быстро устанавливается равновесие, при котором металлы также приобретают заряды противоположного знака:


Таким образом, при разомкнутой цепи на трех имеющихся в элементе Якоби — Даниэля границах раздела фаз устанавливаются равновесия, причем фазы заряжаются. В результате энергетическое состояние электронов на концах разомкнутой цепи-оказывается неодинаковым: на том медном проводнике, который соприкасается с цинковым электродом, энергия Гиббса электронов выше, а на том, который соединен с медным электродом, — ниже. Разность энергий Гиббса электронов на концах цепи и определяет э.д.с. данного элемента.

При замыкании внешней цепи электроны перемещаются от цинкового электрода к медному. Поэтому равновесия на фазовых границах нарушаются; происходит направленный переход ионов цинка из металла в раствор, ионов меди — из раствора в металл, электронов — от цинка к меди: протекает окислительно-восстановительная реакция.

В принципе электрическую энергию может дать любая окислительно-восстановительная реакция. Однако число реакций, практически используемых в химических источниках электрической энергии, невелико. Это связано с тем, что не всякая окислительно-восстановительная реакция позволяет создать гальванический элемент, обладающий технически ценными свойствами (высокая и практически постоянная э.д.с., возможность отбирания больших токов, длительная сохранность и др.). Кроме того, многие окислительно-восстановительные реакции требуют расхода дорогостоящих веществ.

В отличие от медно-цинкового элемента, во всех современных гальванических элементах и аккумуляторах используют не два, а один электролит; такие источники тока значительно удобнее в эксплуатации. Например, в свинцовых аккумуляторах (см. § 189) электролитом служит раствор серной кислоты.

Почти во всех выпускаемых в настоящее время гальванических элементах анод изготовляется из цинка, а в качестве вещества для катода обычно применяются оксиды менее активных металлов.

- 270 -

Описание важнейших гальванических элементов см. § 214, аккумуляторов — пп. 189, 201, 244.

Химические источники электрической энергии применяются в различных отраслях техники. В средствах связи (радио, телефон, телеграф) и в электроизмерительной аппаратуре они служат источниками электропитания, на автомобилях, самолетах, тракторах применяются для приведения в действие стартеров и других устройств, на транспорте, в переносных фонарях с их помощью производится освещение.

Все обычные ХИЭЭ не свободны от двух недостатков. Во-первых, стоимость веществ, необходимых для их работы (например, свинца, кадмия), высока. Во-вторых, отношение количества энергии, которую может отдать элемент, к его массе мало. На протяжении последних десятилетий ведутся исследования, направленные на создание элементов, при работе которых расходовались бы дешевые вещества с малой плотностью, подобные жидкому или газообразному топливу (природный газ, керосин, водород и др.). Такие гальванические элементы называются топливными. Проблеме топливного элемента уделяется в настоящее время большое внимание и можно полагать, что в ближайшем будущем топливные элементы найдут широкое применение.

<<< Назад
Вперед >>>

Генерация: 0.557. Запросов К БД/Cache: 0 / 0
Вверх Вниз