Книга: От атомов к древу. Введение в современную науку о жизни

Великая протонная альтернатива

<<< Назад
Вперед >>>

Великая протонная альтернатива

Все началось в 1929 году, когда немецкий биохимик Карл Ломан открыл АТФ[96]. Сначала ему удалось выделить из тканевых экстрактов некое доселе неизвестное бесцветное вещество, содержащее азот и фосфор и явно принимающее участие в энергетическом обмене. Потом Ломан показал, что гидролиз этого вещества (то есть его распад с участием воды) дает две части фосфорной кислоты, одну часть аденина и одну часть рибозо-5-фосфата. Мысленно собрав все эти части вместе, как элементы конструктора, Ломан в итоге совершенно правильно установил структуру исходной молекулы, которая и оказалась аденозинтрифосфатом.

После этого стали очень быстро накапливаться разнообразные данные, показывающие, что АТФ служит в живых организмах универсальным резервуаром химической энергии. Стало ясно, что он активно участвует и в дыхании, и в мышечном сокращении, и во многих других жизненно важных процессах. Вывод, что АТФ является всеобщей «энергетической валютой», был сделан биохимиками уже к началу 1940-х годов. Именно тогда Фриц Липман (кстати, работавший некоторое время в одной лаборатории с Карлом Ломаном) предложил уже знакомое нам понятие макроэргической связи, подразумевая, конечно, в первую очередь связи между фосфатами в АТФ.

Следующий важный вопрос возник при изучении дыхания, то есть производимого живыми организмами окисления глюкозы до углекислого газа и воды. В результате дыхания синтезируется очень много АТФ — это было ясно. Проблема была в том, что ученым никак не удавалось найти химическую реакцию, непосредственно «привязывающую» окончательный распад глюкозы к синтезу АТФ из АДФ и фосфата. В конце концов им пришлось предположить, что между этими этапами дыхания есть какой-то добавочный макроэргический посредник: энергия, высвобожденная в результате распада глюкозы, сначала передается на этот посредник, а потом уже с него на АТФ. Но и молекулу-посредник найти тоже никак не удавалось. Как раз наоборот, чем тщательнее биохимики исследовали процесс дыхания, тем более неуловимым этот загадочный посредник начинал выглядеть.

Проблему решил английский биохимик Питер Митчелл. Он сначала предположил, а потом и сумел строго доказать, что никакой молекулы-посредника вообще не существует. Хотя промежуточное энергетическое звено действительно есть. Но это не молекула (какая бы то ни было), а всего лишь разность концентраций протонов по разные стороны мембраны. Именно разность концентраций протонов создает так называемую протондвижущую силу, действие которой, в свою очередь, приводит к синтезу АТФ. Получается, что в живых организмах есть еще один — альтернативный — резервуар энергии, не имеющий ни с какими макроэргическими связями ничего общего. Неудивительно, что, когда открытие Митчелла подтвердилось, он получил за него Нобелевскую премию — правда, почему-то по химии (в 1978 году). Кстати, это один из немногих примеров, когда Нобелевская премия за экспериментальное исследование получена в одиночку. Митчелл был очень самостоятельным гением. В науке XX века такие фигуры редки, но Митчелл был именно таков.

Ну а теперь подведем итог тому, что мы уже знаем, с помощью строгих определений. Потенциальная энергия ионов H+, скопившихся по одну сторону непроницаемой для них мембраны, называется протонным потенциалом. (Уточним, что потенциальной энергией мы называем — если можно так выразиться — запас способности произвести работу, связанный с расположением неких объектов в пространстве относительно друг друга. Потенциальная энергия может превратиться в работу, если эти объекты получат возможность переместиться. С точки зрения такой почтенной науки, как физика, это пояснение довольно-таки неуклюже, но нам здесь его хватит.) В общем случае величина протонного потенциала зависит, во-первых, от концентрации самих протонов и, во-вторых, от того, как по разные стороны мембраны распределены электрические заряды (созданные самими протонами или любыми другими частицами независимо от них). Мы ведь помним, что протоны заряжены положительно, поэтому при прочих равных условиях они будут сильнее стремиться туда, где преобладает отрицательный заряд. По этому поводу ученые говорят, что протонный потенциал имеет две составляющие — концентрационную и электростатическую (см. рис. 11.2А, Б).

Разность протонных потенциалов между двумя мембранными отсеками обозначается ??H («дельта-мю-аш»). Здесь ? — символ разности, H означает водород, а буквой ? принято обозначать величину, которая называется химическим потенциалом и является, по сути, химической разновидностью потенциальной энергии. Протонный потенциал — это очень простой частный случай химического потенциала. В реальных задачах всегда, без исключений, обсуждается только разность протонных потенциалов между некоторыми двумя точками или отсеками (например, между наружной и внутренней сторонами клеточной мембраны). Поэтому протонный потенциал и ??H — это фактически одно и то же, слово «разность» тут сплошь и рядом опускают.

Итак, мы теперь знаем, что в клетке есть по меньшей мере две совершенно разные «энергетические валюты» — концентрация АТФ и протонный потенциал, — которые могут достаточно свободно «конвертироваться» друг в друга:

??H ? АТФ

Задачей уже знакомой нам протонной АТФ-синтазы является (в этих терминах) не что иное, как «конвертирование» энергии протонного потенциала в энергию связей АТФ. Впрочем, обратная операция тоже вполне возможна. Белок, способный с затратой АТФ переносить протоны через мембрану против разности потенциалов (то есть туда, где их и так больше), называется протонной АТФазой, или протонным насосом. Очевидно, что протонный насос, наоборот, превращает энергию связей АТФ в энергию протонного потенциала. Бывают ситуации, когда это нужно.

<<< Назад
Вперед >>>

Генерация: 7.068. Запросов К БД/Cache: 3 / 1
Вверх Вниз