Книга: От атомов к древу. Введение в современную науку о жизни

Поэма начала

<<< Назад
Вперед >>>

Поэма начала

В этой главе мы уже говорили о том, насколько разными способами живые существа получают энергию. Теперь нам осталось сузить эту проблему до предела и обсудить способы синтеза АТФ, которых насчитывается всего-то навсего два (причем чаще всего они наблюдаются одновременно у одних и тех же организмов).

Первый способ называется субстратным фосфорилированием. В этом случае по ходу предназначенного для поставки энергии биохимического пути создается некоторая молекула, включающая в себя фосфат с макроэргической связью (X~Ф). А потом этот фосфат переносится на АДФ. В результате получается молекула АТФ, содержащая новую макроэргическую связь и запасающая энергию в себе:

X~Ф + АДФ ? X + АТФ

Именно так генерируется энергия в процессе гликолиза (веществом, которое мы обозначили как X~Ф, там служит фосфоенолпируват). Подобные реакции идут просто в растворе, никакая сложная структура среды с выделенными направлениями и границами для них не нужна. А это означает, что субстратное фосфорилирование вполне соответствует бухнеровскому представлению о клетке как простом мешке с растворенными ферментами.


Второй способ — мембранное фосфорилирование — представляет собой уже хорошо знакомое нам обращение энергии протонного (или натриевого) потенциала в энергию АТФ с помощью соответствующей ионной АТФ-синтазы. Ясно, что для мембранного фосфорилирования необходима замкнутая мембрана, сквозь которую протоны (или ионы натрия) будут проходить только с помощью особых белков и только в одну сторону. Этот способ получения АТФ — основной и в дыхании, и в фотосинтезе. В ходу он и у обладателей многих других типов метаболизма. Например, метаногенные археи (которые живут за счет восстановления углекислого газа до метана) тоже пользуются мембранным фосфорилированием как главным источником энергии. Они создают на своей внешней мембране протонный потенциал, а потом конвертируют его в энергию связей АТФ.

А теперь зададимся вопросом, который наверняка покажется самым интересным во всей этой истории многим биологам независимо от того, связаны ли они с биохимией (хочется надеяться, что и многим небиологам тоже): какое фосфорилирование появилось раньше — субстратное или мембранное?

Сразу признаемся, что это вопрос исключительно сложный (даже сама возможность его поставить появилась считаные десятилетия назад) и никакого окончательного ответа на него нет. Как раз наоборот, на эту тему прямо сейчас идет активная полемика. И чтобы разобраться в ее предмете, нам придется обратиться к самым истокам жизни.

В 1929 году английский биолог Джон Холдейн опубликовал статью о происхождении жизни, в которой бегло, вовсе не претендуя на окончательную истину, попытался обрисовать свои тогдашние представления об этом процессе[106]. Холдейн всегда отличался ясностью и смелостью мыcли. Предложенный им сценарий происхождения жизни оказался невероятно убедительным — до такой степени, что вошел в школьные учебники и породил многочисленные мемы (вроде, например, изображений консервных банок с надписью «Haldane’s Primordial Soup» — «Первичный бульон Холдейна»). Сводится этот сценарий вот к чему. Изначально древняя Земля, разумеется, была совершенно безжизненной. Она имела водный океан и атмосферу, состоявшую в основном из углекислого газа (CO2), аммиака (NH3) и водяного пара. Свободного кислорода в атмосфере не было и озонового слоя, соответственно, тоже. Поэтому ультрафиолетовый компонент солнечных лучей свободно достигал поверхности воды. Ультрафиолетовые лучи несли вполне достаточно энергии, чтобы вызывать спонтанные превращения углекислого газа, аммиака и воды в органические молекулы, которыми постепенно заполнялся океан. Так и возник знаменитый «первичный бульон»: целый океан, представлявший собой теплый разбавленный раствор уже довольно разнообразной органики. Идеальная питательная среда для жизни, которой на тот момент еще не было. В этой-то среде и появились первые живые существа — очень простые, возможно (говорит Холдейн) похожие на вирусы: ведь те и по сей день проявляют активность, только оказавшись в богатой питательной среде, внутри чужой клетки. Во всяком случае, Холдейн был уверен, что первые на Земле живые организмы были гетеротрофами, и считал, что их способом питания, скорее всего, было брожение (тут он цитирует великого французского биолога Луи Пастера: «Брожение — это жизнь без кислорода»). Вот в таком виде гипотеза Холдейна и обрела огромную популярность, которой он, возможно, и сам не ожидал.

Почему эта гипотеза важна для нас? А вот почему. Брожение — это способ получения энергии, полностью основанный на субстратном фосфорилировании. В брожении не участвуют никакие мембранные белки, оно от начала до конца протекает в растворе, и с этой точки зрения его механизм выглядит очень примитивным. Казалось бы, все отлично соответствует гипотезе Холдейна. Однако со времен Холдейна накопилось много фактов, заставляющих серьезно усомниться в том, что первые живые организмы на Земле могли быть бродильщиками[107].

Прежде всего, брожение попросту малоэффективно. Его реакции идут в общем-то на грани энергетической выгоды и дают очень мало АТФ (две молекулы на одну молекулу глюкозы, как мы уже знаем). А вот биохимическая «машинерия» брожения, хоть и не требующая мембранных белков, на самом деле весьма сложна. Для молочнокислого или спиртового брожения нужно примерно 12 ферментов, катализирующих последовательные реакции, причем каждый из этих ферментов представляет собой довольно сложный белок, кодируемый особым геном. А ведь любой из этих белков и генов сам должен быть продуктом долгой эволюции. Трудно поверить, что подобный тип обмена возник самым первым. Гораздо вероятнее, что он появился позже, как пристройка к неким более простым и в то же время более эффективным энергетическим механизмам. У современных специализированных бродильщиков эти древние механизмы исчезли, а брожение осталось. В общем, из того, что брожение обходится без мембранного фосфорилирования, никак не следует, что этот способ добычи энергии очень прост, и уж тем более не следует, что он был исходным для всех живых существ.

Современная молекулярная биология подтверждает эти мысли. На эволюционных деревьях видно, что все бродильщики относятся к производным эволюционным ветвям, достаточно далеким от общего предка всех клеточных организмов. К тому же показано, что ферменты гликолиза у бактерий и у архей не имеют между собой ничего общего[108]. Все это означает, что брожение — довольно позднее приобретение, появлявшееся в ходе эволюции независимо несколько раз. Ничего невероятного в таком выводе нет, мы знаем и другие примеры, когда достаточно сложные механизмы неоднократно независимо «изобретались» разными эволюционными ветвями; по всей видимости, это относится к фотосинтезу и даже к репликации ДНК (см. главу 9). Вот и с брожением та же история.

Сравнивая друг с другом современные живые организмы, легко убедиться, что мембранное фосфорилирование гораздо более универсально, чем субстратное. Оно есть и у бактерий, и у архей, и у эукариот. На мембранном фосфорилировании основана система получения энергии у всех без исключения организмов, использующих фотосинтез или дыхание, а также у метаногенов, карбокситрофов, метилотрофов, водородных бактерий и серобактерий. И ведь это еще неполный список: надо учитывать, что некоторые типы метаболизма мы тут просто не обсуждали (хотя в знакомую нам теперь классификацию все они, конечно, так или иначе входят). Специализированные бродильщики — вообще единственные в современном мире, кто получает энергию просто из реакций, идущих в растворе внутри клетки, без всякой генерации потенциала на плазматической мембране этой клетки.

К этому можно добавить, что и у бродильщиков ионный потенциал на мембране обычно все-таки есть. Если он и не служит для получения энергии, то служит для других целей, в первую очередь для сопряженного транспорта. Всевозможные симпорты и антипорты очень удобно осуществлять, когда на мембране постоянно поддерживается разность концентраций каких-нибудь ионов.

Английский биохимик Ник Лейн считает, что все эти факты не оставляют сомнений в огромной древности ионных потенциалов вообще и мембранного фосфорилирования в частности. По мнению Лейна, для утверждения, что у общего предка всех современных живых клеток было мембранное фосфорилирование, есть примерно столько же оснований, сколько и для утверждения, что у него были, например, рибосомы (в чем давно уже никто не сомневается). Тогда получается, что у него была мембрана, уже способная «держать» либо протонный, либо натриевый потенциал и пригодная для выработки полезной энергии.

Тут надо сказать пару слов о самом Нике Лейне. Он не только биохимик, но и известный популяризатор науки; четыре его книги уже вышли на русском языке (они называются «Лестница жизни. Десять величайших изобретений эволюции», «Энергия, секс и самоубийство. Митохондрии и смысл жизни», «Кислород. Молекула, изменившая мир» и «Вопрос жизни»). А его любимая узкая специальность — биоэнергетика. Неудивительно, что сквозь многие работы Лейна, что называется, красной нитью проходит одна и та же мысль: современная биология уделяет слишком много внимания проблеме информации в ущерб проблеме энергии. Давайте присмотримся к этой мысли.

Не кто иной, как Джон Холдейн, в свое время определил жизнь как способ существования самовоспроизводящихся структур за счет притока энергии извне. В этом определении важны обе части. Основу живых самовоспроизводящихся структур образуют носители наследственной информации, то есть у большинства живых организмов молекулы ДНК; процесс их копирования хорошо нам знаком, он называется репликацией (см. главу 9). А теперь подумаем о том, что в ходе репликации любая цепочка ДНК собирается из большого количества — от тысяч до миллионов — отдельных плавающих в растворе мономеров-нуклеотидов, которые специальные ферменты должны сначала захватить, потом расположить в необходимом порядке, примерно как типографские литеры при наборе текста, потом сшить фосфатными мостиками, а потом еще придать получившейся молекуле строго определенную пространственную укладку. Нечего и говорить, что этот сложный процесс, без которого земная жизнь немыслима, требует огромных (по молекулярным меркам) затрат энергии. Откуда эта энергия берется? И откуда она бралась, когда жизнь только-только возникала?

На этот вопрос Лейн дает вот какой общий ответ. Пусть мы и не знаем точно, в какой именно природной системе появилась жизнь, но из общих соображений следует ожидать, что эта система была, выражаясь научным языком, термодинамически неравновесной. Это означает, что в ней наверняка существовал какой-нибудь устойчивый перепад или поток, к которому новорожденная жизнь могла бы, грубо говоря, «присосаться». Древний океан, освещенный Солнцем, подходит на роль такой системы очень плохо. Во-первых, он слишком однороден. Во-вторых, ультрафиолетовое излучение, служащее в этих условиях главным поставщиком энергии (его кванты мощнее, чем кванты видимого света), разрушает примерно столько же химических связей, сколько создает. Использовать его как источник энергии для синтеза сложных молекул очень трудно. И таким образом, Мировой океан, постепенно превращающийся в полный питательной органики первичный бульон, — вещь малореальная.

А что, если жизнь возникла на границе двух растворов, резко отличавшихся друг от друга содержанием каких-то важных ионов? Это не только сразу решает вопрос об источнике энергии (любая разность концентраций ионов — готовый потенциал, который можно превратить в работу), но и объясняет, почему мембранные потенциалы настолько широко распространены: да потому, что именно на создающей их поверхности раздела жизнь когда-то и началась.

Есть, например, остроумная идея, что подходящие для этого условия вполне могли бы предоставить бьющие на океанском дне, на окраинах рифтовых зон, щелочные гидротермальные источники. Они в меру горячи (достаточно для ускорения большинства реакций, но не настолько, чтобы в них разрушались органические молекулы), отличаются высоким содержанием молекулярного водорода (H2) и, что для нас сейчас особенно важно, чрезвычайно низкой кислотностью. А важно это вот почему. Древняя атмосфера Земли, скорее всего, содержала колоссальную долю углекислого газа (тут очень показательно, что атмосферы двух других планет земного типа — Венеры и Марса — по сей день состоят преимущественно из углекислоты). Растворяясь в воде, углекислый газ (CO2) превращается в угольную кислоту (H2CO3), которая тут же диссоциирует, распадаясь на анионы и протоны. А это с неизбежностью означает, что океан древней Земли был очень кислым. И получается, что внутри геотермального источника среда была щелочная и восстановительная (там много ионов OH? и молекул H2), а снаружи от него в то же время — кислая и окислительная (там много ионов H+ и молекул CO2). Просто идеальные условия, чтобы использовать перепад концентрации протонов для получения энергии. Особенно если теплый источник и окружающая его океанская толща были чем-то разделены — ну, для начала хотя бы перегородкой или трубкой из отложенных водой пористых минералов (а это уж точно вполне реально, такие перегородки и трубки при источниках подобного типа образуются сами). Тогда сразу возникает система из двух компартментов с естественной протондвижущей силой между ними. Вот эту-то силу зарождающаяся жизнь и может «оседлать».

Добавим, что направление протонного градиента во всех клетках, использующих его для получения энергии, именно таково, как предсказывается этой моделью. Снаружи протонов гораздо больше, чем внутри. Это относится и к бактериям, у которых синтез АТФ идет прямо на плазматической мембране клетки, и к потомкам бактерий — митохондриям, где синтез АТФ идет на внутренней мембране (вероятно, происходящей из плазматической мембраны бывшей бактерии). Во всех этих случаях энергетически выгодный поток протонов направлен снаружи внутрь.

На сегодняшний день существует подробно разработанная модель, описывающая возможные первые шаги возникновения жизни в горячих щелочных источниках[109]. Главный энтузиаст этой модели — биохимик Уильям Мартин. Недавно при его участии было проведено исследование, на основании сравнений прочитанных геномов восстановившее несколько вероятных признаков общего предка всех живых клеток[110]. Получилось там следующее. Общий предок бактерий, архей и эукариот, скорее всего, был анаэробом (жил в отсутствие кислорода) и термофилом (жил при довольно высокой по нынешним меркам температуре). По типу метаболизма он был или метаногеном (восстанавливающим углекислый газ до метана), или ацетогеном (восстанавливающим углекислый газ до уксусной кислоты). И наконец, у него не было протонных насосов, зато были протонные АТФ-синтазы. Последнее означает, что он не умел самостоятельно создавать трансмембранную разность концентраций протонов, зато умел использовать уже существующую разность для генерации энергии. И весь этот набор признаков отлично согласуется с идеей, что наш далекий предок жил на границе щелочного горячего источника.

Тут, однако, нужно притормозить, чтобы четко разделить статусы обсуждаемых утверждений. Например, широчайшая распространенность мембранных потенциалов у самых разных живых организмов — это просто факт. Первичность мембранного фосфорилирования по отношению к субстратному — гипотеза, хотя и довольно правдоподобная. А происхождение жизни в щелочных геотермальных источниках — это сценарий, основанный на целом наборе допущений и, к сожалению, по самой своей природе трудно поддающийся проверке. Как говорит сам же Уильям Мартин, даже если мы построим в лаборатории реактор, в который с одного конца подаются водород, углекислый газ и азот, а с другого конца выходят готовые бактерии, это будет доказательством того, что жизнь в принципе может возникнуть таким образом, но не того, что она действительно возникла именно так в реальной истории планеты Земля. Хотя и первое, конечно, тоже было бы очень интересно, тем более что попытки создать такой реактор уже предпринимаются[111].

Сделаем еще одно отступление. В 1952 году американский фантаст Рэймонд Джоунс опубликовал замечательный рассказ под названием «Уровень шума», сюжет которого следующий. Некая чрезвычайно солидная государственная организация приглашает крупных физиков и сообщает им, что один молодой изобретатель недавно построил антигравитационную машину. К сожалению, при испытании машины изобретатель погиб, и никаких записей после него не осталось. Но то, что машина работала, — факт. Это подтверждается снятым во время испытаний фильмом и, главное, свидетельствами авторитетных ученых и военных, которые видели работу антигравитационного устройства своими глазами. Ставится задача воссоздать это достижение. Приглашенные физики сперва заходят в тупик, но убеждают себя: кто-то же это сделал, значит, и мы можем! — и в конце концов действительно создают антигравитационную машину, хотя совершенно не такую, как можно было бы ожидать, исходя из полученной в начале работы информации. После чего физикам объясняют, что вся эта информация была вымышленной: никакой антигравитационной машины на самом деле не было. Они создали ее первыми. Беда в том, что изначально все грамотные физики были убеждены в невозможности антигравитации и не стали бы по своей воле даже пытаться ее открыть. Трюк с правдоподобным сообщением о постройке вымышленной машины был специально придуман, чтобы снять этот мысленный фильтр. «Внутреннее решение относительно того, можно ли найти ответ на проблему, принимается обычно еще до начала поисков ответа», — говорит руководивший этим проектом психолог.

В рассказе Джоунса есть и другие интересные мысли, не вошедшие в этот краткий пересказ. Но нам сейчас главное — отметить, что положение реальных современных биохимиков, исследующих происхождение жизни, на самом деле довольно похоже на положение описанных в рассказе физиков, пытающихся открыть антигравитацию. Правда, одно важное отличие все-таки есть. Биохимики-то уж совершенно точно знают, что возникновение живой материи из неживой по крайней мере один раз действительно произошло. Значит, это потенциально можно повторить. И не обязательно тем же способом, какой сработал на Земле четыре с лишним миллиарда лет назад. Здесь у науки появляются не только исследовательские, но и творческие возможности.

Гипотеза происхождения жизни в щелочных источниках порождает много неизбежных вопросов. Прежде всего: какая у общего предка всех живых организмов была мембрана? Очевидно, что обойтись без полноценной внешней мембраны (или ее аналога) этот предок не мог — иначе ему было бы не на чем поддерживать устойчивую разность концентраций протонов, от которой, согласно обсуждаемой теории, должен был зависеть весь его метаболизм. Между тем в разных эволюционных стволах, а именно у бактерий и у архей, состав клеточных мембран различается настолько серьезно, что между ними трудно представить переходное состояние (см. главу 5). Эволюционное превращение бактериальной мембраны в архейную (или наоборот) чисто биохимически выглядит маловероятным, гораздо проще допустить, что бактерии и археи «оделись» мембранами независимо друг от друга. Но как тогда их общий предок мог поддерживать протонный потенциал? Значит, какой-то аналог мембраны у него все-таки был? Но какой же?

В ранних работах Ника Лейна никаких убедительных ответов на эти вопросы нет, хотя автор там и подчеркивает, что прекрасно понимает саму проблему. Однако, поломав голову несколько лет, он с помощью своих коллег из Лондонского университетского колледжа нашел возможное объяснение[112]. Шанс расставить все по своим местам появляется, если предположить, что «изобретением», которое независимо совершили бактерии и археи, была не мембрана как таковая, а мембрана, непроницаемая для протонов. Ведь протон — это очень маленькая частица. Сделать мембрану непроницаемой для протонов трудно, и нет ничего удивительного, что в ходе эволюции этого удалось достичь не сразу. Между тем расчеты Лейна и его коллег показывают, что самые древние формы жизни могли обойтись и более простой мембраной, сквозь которую протоны «протекали». Правда, при одном добавочном условии. В эту мембрану должен был быть встроен натрий-протонный антипортер — белок, обменивающий протоны на ионы натрия, то есть, иными словами, превращающий градиент протонов в градиент натрия или наоборот (??H ? ??Na). Показано, что при прочих равных условиях проницаемость липидной мембраны для натрия на шесть порядков величины, то есть примерно в миллион раз, ниже, чем проницаемость той же самой мембраны для протонов. Поэтому, если достаточно быстро (чтобы протоны не успевали утечь) постоянно заменять градиент протонов градиентом натрия, этот последний можно будет уже спокойно использовать для мембранного фосфорилирования, то есть для перевода энергии запасенных ионов в энергию химических связей. Остроумное решение.

Если это решение еще и соответствует тому, что реально случилось в истории жизни на Земле, то получается, что мембрана общего предка всех современных живых клеток была какой-то очень простой (вполне вероятно, что даже неорганической). И только уже после того, как древо жизни разделилось на две крупные ветви, представители этих ветвей — бактерии и археи — независимо друг от друга «изобрели» чисто протонную мембранную энергетику. Для этого было необходимо создать мембрану, не пропускающую протоны. Бактерии и археи решили эту задачу примерно в одно и то же время, но несколько разными способами, в результате чего их мембраны стали отличаться.

Надо сказать, что эта новая гипотеза имеет как минимум одно вполне проверяемое следствие. Согласно ей, натрий-протонный антипортер должен быть не «новоделом», а чрезвычайно древним белком, имевшимся уже у общего предка всех современных живых клеток. Это можно проверить методами биоинформатики, сравнивая последовательности соответствующих белков (и генов, которые их кодируют) у разных живых организмов. Данные на эту тему, имеющиеся сейчас, вроде бы не противоречат гипотезе Лейна, но это еще надо выверить и уточнить.

В целом у Лейна и его коллег получается, что система переработки энергии развивалась ступенчато. Первым важнейшим ключевым новшеством было случившееся в очень глубокой древности «изобретение» натрий-протонного антипортера, которое сразу позволило эффективно генерировать энергию на примитивной мембране. А вторым новшеством, причем «изобретенным» в двух эволюционных ветвях параллельно, стала мембрана, не пропускающая протоны. Это дополнительно увеличило эффективность систем переработки энергии, заодно сделав их более универсальными: например, в пресной воде удобнее пользоваться протонными АТФ-синтазами, чем натриевыми, а в морской — наоборот.

Возвращаясь к обсуждению гипотезы возникновения жизни в щелочных источниках, надо сказать, что в ней, при всем ее изяществе, есть несколько слабых мест.

Во-первых, предполагаемая этой гипотезой химическая среда с точки зрения современных взглядов на возникновение жизни не является идеальной. По Мартину, щелочная полость гидротермального источника соответствует цитоплазме готовой клетки, а слабокислая морская вода — внешней среде. Проблема в том, что РНК — судя по всему, ключевой для ранней жизни полимер — в щелочной среде неустойчива, а устойчива как раз в слабокислой[113]. Это явное противоречие, и можно ли его снять, пока неизвестно.

Во-вторых, расчеты некоторых биофизиков приводят к выводу, что для работы ионной АТФ-синтазы любого типа нужен достаточно мощный мембранный потенциал, который можно поддерживать только на мембране, уже близкой по структуре к мембранам современных организмов. Это может означать, что мембранное фосфорилирование появилось в эволюции все-таки позже, чем субстратное[114] [115]. Как Лейн и его коллеги справятся с этим возражением, покажет время.

В-третьих, биохимики уже достаточно давно показали (в том числе и экспериментально), что конденсация органических молекул в сложные полимеры, потенциально способные стать основой живых клеток, гораздо легче происходит на фоне колебаний влажности, чем в стабильно-водных условиях. Это сильный довод против происхождения жизни в глубоководных горячих источниках, как по умолчанию предполагает гипотеза Мартина. Иное дело, что горячие источники могут быть и мелководными — или вообще находиться на суше. В последнее время появляются палеонтологические данные, достоверно показывающие, что во времена, когда жизнь (судя по всему) недавно возникла, древние бактерии жили в горячих источниках, располагавшихся именно на суше, в окрестностях наземных вулканов[116]. Само по себе это не опровергает и не подтверждает ни одну из гипотез возникновения жизни, но заставляет серьезно задуматься.

В-четвертых, мы до сих пор исходили — невольно и неявно — из того, что древнейшая форма жизни была или счастливым обладателем мембранного фосфорилирования, или же бродильщиком. Третьего варианта на современной Земле нет. Но ведь интересующие нас события происходили в эпоху, очень далекую от современности. Многие процессы тогда могли идти по-другому. На современной Земле действует скулачевский первый закон биоэнергетики, согласно которому энергия из внешних источников не используется живыми организмами напрямую: они сначала обязательно должны «конвертировать» ее или в энергию связей АТФ, или в один из двух ионных потенциалов (протонный или натриевый). Но на древней Земле первый закон биоэнергетики мог и нарушаться[117]. Первые живые организмы как раз вполне могли напрямую использовать в биохимических процессах небольшие порции энергии из внешней среды — например, в виде молекул пирофосфата или квантов света, запускающих самопроизвольное фосфорилирование органики (уже упоминавшийся эффект, который называется фотофосфорилированием). Есть и другие варианты. Древняя жизнь отнюдь не стояла перед выбором «или мембранное фосфорилирование — или брожение», на самом деле у нее было гораздо больше возможностей.

В любом случае мы теперь понимаем, что история жизни на Земле — это история взаимодействия живых систем не только с информацией, но и с энергией. Проведя рискованную аналогию, можно сказать, что сводить все биологические явления к информационным процессам — все равно что сводить всю историю Европы к биографиям королевских особ. К тому же надо иметь в виду, что биоэнергетика — существенно более молодая наука, чем сосредоточенная на наследственной информации генетика. Например, свое нынешнее название биоэнергетика получила только в 1969 году (генетика — в 1905 году). И сейчас у биоэнергетики еще многое впереди.

<<< Назад
Вперед >>>

Генерация: 0.840. Запросов К БД/Cache: 3 / 1
Вверх Вниз