: .

<<<
>>>
----
· #1

BrodaE. The evolution of the bioenergetic processes. Pergamon Press, 1975. : . . .: , 1978.

· #2

.. . .: , 2003.

· #3

DobzhanskyT. Nothing in biology makes sense except in the light of evolution // The American Biology Teacher, 1973, V.14, 3, 125129. : http://heathland.ru/111/LJ/Dobzhansky_rus.pdf

· #4

. .: , 1965.

· #5

, ( ).

· #6

BrockW.H. The life and work of William Prout // Medical history, 1965, V.9, 2, 101126.

· #7

CaffauE. et al. An extremely primitive halo star // arXiv preprint arXiv: 1203.2612 (2012).

· #8

OddoG. Die molekularstruktur der Radioaktiven atome // Zeitschrift fur anorganische und allgemeine Chemie, 1914, V.87, 1, 253268. HarkinsW.D. The evolution of the elements and the stability of complex atoms. I. A new periodic system which shows a relation between the abundance of the elements and the structure of the nuclei of atoms // Journal of the American Chemical Society, 1917, V.39, 5, 856879.

· #9

BinnemansK. et al. Rare-earth economics: the balance problem // JOM, 2013, V.65, 7, 846848.

· #10

BurbidgeE.M. et al. Synthesis of the elements in stars // Reviews of Modern Physics, 1957, V.29, 4, 547650.

· #11

DobzhanskyT. Teilhard de Chardin and the orientation of evolution // Zygon, 1968, V.3, 3, 242258. ( ).

· #12

.. . : , 1986.

· #13

BracherP.J. Origin of life: Primordial soup that cooks itself // Nature Chemistry, 2015, V.7, 4, 273274.

· #14

. ..

· #15

VanderbiltB. Kekules whirling snake: Fact or fiction // Journal of Chemical Education, 1975, V.52, 11, 709.

· #16

IrwinL.N., Schulze-MakuchD. Petrolakes // Cosmic Biology, 2011, 225251.

· #17

Bracher, 2015.

· #18

. . .: , 19841985 (2 ).

· #19

.. , - - (1865).

· #20

-- , , - . -- , .

· #21

InagakiF. et al. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system // Proceedings of the National Academy of Sciences, 2006. V. 103, 38, 1416414169.

· #22

BudisaN., Schulze-MakuchD. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment // Life, 2014, V.4, 3, 331340.

· #23

WhittetD.C.B. et al. Observational constraints on methanol production in interstellar and preplanetary ices // The Astrophysical Journal, 2011, V.742, 1, 110.

· #24

Schulze-MakuchD. Io: Is life possible between fire and ice // Journal of Cosmology, 2010, V.5, 912919.

· #25

. . . .: , 2008.

· #26

VickeryH.B. The origin of the word protein // The Yale Journal of Biology and Medicine, 1950, V.22, 5, 387393.

· #27

.. - // , 1420 1927. , 1928.

· #28

WilliamsA.N., WoessnerK.M. Monosodium glutamate allergy: menace or myth? // Clinical & Experimental Allergy, 2009, V.39, 5, 640646.

· #29

.. // . 2005. 5.

· #30

CroninJ.R., PizzarelloS. Amino acids in meteorites // Advances in Space Research, 1983, V.3, 9, 518.

· #31

. .-, ..

· #32

.. . .: , 1974.

· #33

.., .., .. - // . .: , 1967.

· #34

. ...

· #35

PovolotskayaI.S., KondrashovF.A. Sequence space and the ongoing expansion of the protein universe // Nature, 2010, V.465, 922926.

· #36

BrucknerH. et al. Liquid chromatographic determination of D-amino acids in cheese and cow milk. Implication of starter cultures, amino acid racemases, and rumen microorganisms on formation, and nutritional considerations // Amino Acids, 1992, V.2, 3, 271284.

· #37

ElsilaJ.E. et al. Meteoritic amino acids: diversity in compositions reflects parent body histories // ACS Central Science, 2016, V.2, 6, 370379.

· #38

. ..

· #39

.., .., .. // . 2012. 2.

· #40

.. - . .: , 1979.

· #41

WoeseC.R., KandlerO., WheelisM.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya // Proceedings of the National Academy of Sciences, 1990, V.87, 12, 45764579.

· #42

LombardJ., Lopez-GarciaP., MoreiraD. The early evolution of lipid membranes and the three domains of life // Nature Reviews. Microbiology, 2012, V.10, 7, 507515.

· #43

KogaY. et al. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent // Journal of Molecular Evolution, 1998, V.46, 1, 5463.

· #44

MartinW., RussellM.J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2003, V.358, 1429, 5985.

· #45

CordovaA. et al. Amino acid catalyzed neogenesis of carbohydrates: A plausible ancient transformation // Chemistry: A European Journal, 2005, V.11, 16, 47724784.

· #46

WatanabeH. et al. A cellulase gene of termite origin // Nature, 1998, 330331.

· #47

TanimuraA. et al. Animal cellulases with a focus on aquatic invertebrates // Fisheries Science, 2013, V.79, 1, 113.

· #48

RobinsonJ.M. Lignin, land plants, and fungi: biological evolution affecting Phanerozoic oxygen balance // Geology, 1990, V.18, 7, 607610.

· #49

BeerlingD.J. et al. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere // Geochimica et Cosmochimica Acta, 2002, V.66, 21, 37573767.

· #50

Cavalier-SmithT. Cell evolution and Earth history: stasis and revolution // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2006, V.361, 1470, 9691006.

· #51

CallahanM.P. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases // Proceedings of the National Academy of Sciences, 2011, V.108, 34, 1399513998.

· #52

MulkidjanianA.Y., CherepanovD.A., GalperinM.Y. Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light // BMC Evolutionary Biology, 2003, V.3, 1, 1218.

· #53

DahmR. Friedrich Miescher and the discovery of DNA // Developmental Biology, 2005, V.278, 2, 274288.

· #54

TrolandL.T. Biological enigmas and the theory of enzyme action // The American Naturalist, 1917, V.51, 606, 321350.

· #55

DemerecM. What is a gene? // Journal of Heredity, 1933, V.24, 10, 369378.

· #56

AveryO.T., MacLeodC.M., McCartyM. Studies on the chemical nature of the substance inducing transformation of Pneumococcal types // Journal of Experimental Medicine, 1944, V.79, 2, 137158.

· #57

WatsonJ.D., CrickF.H. Molecular structure of nucleic acids // Nature, 1953, V.171, 737738.

· #58

JeffriesA.C., SymonsR.H. A catalytic 13-mer ribozyme // Nucleic Acids Research, 1989, V.17, 4, 13711377.

· #59

ForterreP. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain // Proceedings of the National Academy of Sciences of the United States of America, 2006, V.103, 10, 36693674.

· #60

.. : // . 2008. 317.

· #61

. 1759. . .: , 2011. .

· #62

RobertsI.F. Maupertuis: Doppelganger of Doctor Moreau // Science Fiction Studies, 2001, V.28, 2, 261274.

· #63

., . // . 1964. . 82. . 1, 133160.

· #64

GamowG., YcasM. Statistical correlation of protein and ribonucleic acid composition // Proceedings of the National Academy of Sciences, 1955, V.41, 12, 10111019.

· #65

.. .. // .. , , . .: , 2001, 114118.

· #66

- -, . . , , , . , , , , .

· #67

, : https://www.researchgate.net/post/Why_did_evolution_favor_ATP_and_not_GTP_TTP_or_CTP

· #68

, : , , (poly U), , . , , poly U . , , poly U. , UUU . , poly C , poly A , CCC , AAA . , , ( ) AUG. . , , . (., . . .: , 1987. . 2. . 76.)

· #69

RetallackG.J. et al. Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa // Precambrian Research, 2013, V.235, 7187.

· #70

.. . .: , 2014.

· #71

HussellT., BellT.J. Alveolar macrophages: plasticity in a tissue-specific context // Nature Reviews. Immunology, 2014, V.14, 8193.

· #72

.. // . 2003. 6. 2532.

· #73

.., .. // . 2001. . 4, 2946.

· #74

DanovaroR. et al. The first metazoa living in permanently anoxic conditions // BMC Biology, 2010, V.8, 1, 30.

· #75

JosephR. The origin of eukaryotes: Archaea, bacteria, viruses and horizontal gene transfer // Journal of Cosmology, 2010, V.10, 34183445.

· #76

.. .: , 2014.

· #77

YutinN. et al. The origins of phagocytosis and eukaryogenesis // Biology Direct, 2009, V.4, 1, 9.

· #78

MullerF. et al. First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat // Environmental Microbiology, 2010, V.12, 8, 23712383.

· #79

PittisA.A., GabaldonT. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry // Nature, 2016, V.531, 101104.

· #80

BaumD., BaumB. An inside-out origin for the eukaryotic cell // BMC Biology, 2014, V.12, 1, 76.

· #81

BaumD., BaumB. The world in a cell // New Scientist, 2015, V.225, 3008, 2829.

· #82

AlbersS.V., MeyerB.H. The archaeal cell envelope // Nature Reviews. Microbiology, 2011, V.9, 414426.

· #83

: https://postnauka.ru/faq/35994

· #84

BellP.J.L. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? // Journal of Molecular Evolution, 2001, V.53, 3, 251256.

· #85

TakemuraM. Poxviruses and the origin of the eukaryotic nucleus // Journal of Molecular Evolution, 2001, V.52, 5, 419425.

· #86

AbedinM., KingN. Diverse evolutionary paths to cell adhesion // Trends in Cell Biology, 2010, V.20, 12, 734742.

· #87

SzymonaM., OstrowskiW. Inorganic polyphosphate glucokinase of Mycobacterium phlei // Biochimica et Biophysica Acta (BBA), Specialized Section on Enzymological Subjects, 1964, V.85, 2, 283295.

· #88

HugL.A. et al. A new view of the tree of life // Nature Microbiology, 2016, V.1, 16.

· #89

.. // . 1996. 2.

· #90

. // . .: , 1966.

· #91

YamagataY. et al. Volcanic production of polyphosphates and its relevance to prebiotic evolution // Nature, 1991, V.352, 516519.

· #92

.. // . 1997. 5.

· #93

, , , , .

· #94

.., .. . - // . 2010. . 180, 931956.

· #95

YoshidaM. et al. ATP synthase a marvellous rotary engine of the cell // Nature Reviews. Molecular Cell Biology, 2001, V.2, 669677.

· #96

LangenP., HuchoF. Karl Lohmann and the Discovery of ATP // Angewandte Chemie International Edition, 2008, V.47, 10, 18241827.

· #97

SkulachevV.P. Sodium bioenergetics // Trends in Biochemical Sciences, 1984, V.9, 11, 483485.

· #98

MulkidjanianA.Y., DibrovP., GalperinM.Y. The past and present of sodium energetics: may the sodium-motive force be with you // Biochimica et Biophysica Acta (BBA). Bioenergetics, 2008, V.1777, 7, 985992.

· #99

MulkidjanianA.Y. et al. Evolutionary primacy of sodium bioenergetics // Biology Direct, 2008a, V.3, 1, 1322.

· #100

QuayleJ.R., FerenciT. Evolutionary aspects of autotrophy // Microbiological Reviews, 1978, V.42, 2, 251273.

· #101

PeretoJ. et al. Comparative biochemistry of CO2 fixation and the evolution of autotrophy // International Microbiology, 1999, V.2, 310.

· #102

.. // . 1997. 1.

· #103

.. : . - . .: , 2000.

· #104

: . . . .

· #105

. // . 2002. 12.

· #106

HaldaneJ.B.S. The origin of life // Rationalist Annual, 1929.

· #107

LaneN., AllenJ.F., MartinW. How did LUCA make a living? Chemiosmosis in the origin of life // BioEssays, 2010, V.32, 4, 271280.

· #108

SiebersB., SchonheitP. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea // Current Opinion in Microbiology, 2005, V.8, 6, 695705.

· #109

MartinW., RussellM.J. On the origin of biochemistry at an alkaline hydrothermal vent // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2007, V.362, 1486, 18871926.

· #110

WeissM.C. et al. The physiology and habitat of the last universal common ancestor // Nature Microbiology, 2016, V.1, 1611616122.

· #111

HerschyB. et al. An origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution, 2014, V.79, 56, 213227.

· #112

SojoV., PomiankowskiA., LaneN. A bioenergetic basis for membrane divergence in archaea and bacteria // PLoS Biology, 2014, V.12, 8, e1001926.

· #113

BernhardtH.S., TateW.P. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? // Biology Direct, 2012, V.7, 1, 4.

· #114

.. . N+/+- // . 2015. . 80. 5, 590611.

· #115

DibrovaD.V. et al. The role of energy in the emergence of biology from chemistry // Origins of Life and Evolution of Biospheres, 2012, V.42, 5, 459468.

· #116

DjokicT. et al. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits // Nature Communications, 2017, V.8, 15263.

· #117

, .

· #118

KeelingP.J. et al. The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism // Genome Biology and Evolution, 2010, V.2, 304309.

· #119

FelixM.A. et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses // PLoS Biology, 2011, V.9, 1, e1000586.

· #120

SuttleC.A. Viruses in the sea // Nature, 2005, V.437, 356361.

· #121

WeitzJ.S., WilhelmS.W. An ocean of viruses // Scientist, July 2013.

· #122

BaltimoreD. Expression of animal virus genomes // Bacteriological Reviews, 1971, V.35, 3, 235241.

· #123

.. // . 1997. 4.

· #124

.. . .: , 2014.

· #125

, , , . DamianL. et al. Single-strand DNA translation initiation step analyzed by Isothermal Titration Calorimetry // Biochemical and Biophysical Research Communications, 2009, V.385, 3, 296301.

· #126

MoreiraD., Lopez-GarciaP. Ten reasons to exclude viruses from the tree of life // Nature Reviews Microbiology, 2009, V.7, 306311.

· #127

HegdeN.R. et al. Reasons to include viruses in the tree of life // Nature Reviews Microbiology, 2009, V.7, 615.

· #128

ForterreP. Defining life: the virus viewpoint // Origins of Life and Evolution of Biospheres, 2010, V.40, Issue 2, 151160.

· #129

BandeaC.I. A new theory on the origin and the nature of viruses // Journal of Theoretical Biology, 1983, V.105, 4, 591602.

· #130

LaScolaB. et al. A giant virus in amoebae // Science, 2003, V.299, 5615, 20332033.

· #131

MillerS., Krijnse-LockerJ. Modification of intracellular membrane structures for virus replication // Nature Reviews Microbiology, 2008, V.6, 363374.

· #132

NovoaR.R. et al. Virus factories: associations of cell organelles for viral replication and morphogenesis // Biology of the Cell, 2005, V.97, 2, 147172.

· #133

Suzan-MontiM. et al. Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga Mimivirus // PLoS One, 2007, V.2, 3, e328.

· #134

ClaverieJ.M. Viruses take center stage in cellular evolution // Genome Biology, 2006, V.7, 6, 110.

· #135

ThompsonL.R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism // Proceedings of the National Academy of Sciences, 2011, V.108, 39, E757?E764.

· #136

Forterre, 2010.

· #137

BamfordD.H. Do viruses form lineages across different domains of life? // Research in Microbiology, 2003, V.154, 4, 231236.

· #138

RaoultD., ForterreP. Redefining viruses: lessons from Mimivirus // Nature Reviews Microbiology, 2008, V.6, 315319.

· #139

KooninE.V., SenkevichT.G., DoljaV.V. The ancient Virus World and evolution of cells // Biology Direct, 2006. V. 1, 1, 29.

· #140

LwoffA. Interaction among virus, cell, and organism. Nobel Lecture, December 11, 1963.

· #141

BennerS.A. Defining life // Astrobiology, 2010, V.10, , 10, 10211030.

· #142

.. // . 1993. . 54. 2, 131148.

· #143

, .. , . , . , 3, . - , , .

· #144

StanleyW.M. Isolation of a crystalline protein possessing the properties of tobacco mosaic virus // Science, 1935, V.81, 2113, 644645.

· #145

LwoffA. The concept of virus // Microbiology, 1957, V.17, 2, 239253.

· #146

LaScola et al., 2003.

· #147

ArslanD. et al. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae // Proceedings of the National Academy of Sciences, 2011, V.108, 42, 1748617491.

· #148

AbergelC., LegendreM., ClaverieJ.M. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus // FEMS Microbiology Reviews, 2015, V.39, 6, 779796.

· #149

SchulzF. et al. Giant viruses with an expanded complement of translation system components // Science, 2017, V.356, 6333, 8285.

· #150

ColsonP. et al. Viruses with more than 1,000 genes: Mamavirus, a new Acanthamoeba polyphagamimivirus strain, and reannotation of Mimivirus genes // Genome Biology and Evolution, 2011, V.3, 737742.

· #151

LegendreM. et al. Genomics of Megavirus and the elusive fourth domain of life // Communicative & Integrative Biology, 2012, V.5, 1, 102106.

· #152

PhilippeN. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes // Science, 2013, V.341, 6143, 281286.

· #153

CorradiN. et al. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis // Nature Communications, 2010, V.1, 7783.

· #154

Schulz et al., 2017.

· #155

Raoult, Forterre, 2008.

· #156

ForterreP. The origin of DNA genomes and DNA replication proteins // Current Opinion in Microbiology, 2002, V.5, 5, 525532.

· #157

ForterreP. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells // Biochimie, 2005, V.87, 910, 793803.

· #158

ForterreP., PrangishviliD. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties // Annals of the New York Academy of Sciences, 2009, V.1178, 1, 6577.

· #159

ShumanS. What messenger RNA capping tells us about eukaryotic evolution // Nature Reviews. Molecular Cell Biology, 2002, V.3, 619625.

· #160

, - , . . FayN., PanteN. Nuclear entry of DNA viruses // Frontiers in Microbiology, 2015, V.6, 467.

· #161

ForterreP. The origin of viruses and their possible roles in major evolutionary transitions // Virus Research, 2006, V.117, 1, 516.

· #162

TakeuchiN., HogewegP. Evolution of complexity in RNA-like replicator systems // Biology Direct, 2008, V.3, 1, 11.

· #163

LaScolaB. et al. The virophage as a unique parasite of the giant mimivirus // Nature, 2008, V.455, 100104.

· #164

SuttleC.A. Marine viruses major players in the global ecosystem // Nature Reviews. Microbiology, 2007, V.5, 801812.

· #165

EugeneV., KooninE.V., DoljaV.V. Virus world as an evolutionary network of viruses and capsidless selfish elements // Microbiology and Molecular Biology Reviews, 2014, V.78, 2, 278303.

· #166

ForterreP. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life // Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, V.59, 100108.

· #167

.

· #168

.. // . 2003. 5.

· #169

SaltG. Experimental studies in insect parasitism. XIII. The haemocytic reaction of a caterpillar to eggs of its habitual parasite // Proceedings of the Royal Society of London, B: Biological Sciences, 1965, V.162, 988, 303318.

· #170

StoltzD.B., VinsonS.B. Penetration into caterpillar cells of virus-like particles injected during oviposition by parasitoid ichneumonid wasps // Canadian Journal of Microbiology, 1979, V.25, 2, 207216.

· #171

EdsonK.M. et al. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoids host // Science, 1981, V.211, 4482, 582583.

· #172

StoltzD.B. et al. Polydnaviridae a proposed family of insect viruses with segmented, double-stranded, circular DNA genomes // Intervirology, 1984, V.21, 1, 14.

· #173

FlemingJ.G., SummersM.D. Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host // Proceedings of the National Academy of Sciences, 1991, V.88, 21, 97709774.

· #174

Gundersen-RindalD. et al. Parasitoid polydnaviruses: evolution, pathology and applications: Dedicated to the memory of Nancy E.Beckage // Biocontrol Science and Technology, 2013, V.23, 1, 161.

· #175

HayakawaY. Growth-blocking peptide: an insect biogenic peptide that prevents the onset of metamorphosis //Journal of Insect Physiology, 1995, V.41, 1, 16.

· #176

BeckageN.E. Parasitoids and polydnaviruses // Bioscience, 1998, V.48, 4, 305311

· #177

StoltzD.B. The polydnavirus life cycle // Parasites and pathogens of insects, 1993, V.1, 167187.

· #178

WebbB.A. Polydnavirus biology, genome structure, and evolution // The insect viruses. Springer US, 1998, 105139.

· #179

FedericiB.A., BigotY. Origin and evolution of polydnaviruses by symbiogenesis of insect DNA viruses in endoparasitic wasps // Journal of Insect Physiology, 2003, V.49, 5, 419432.

· #180

WebbB., FisherT., NusawardaniT. The natural genetic engineering of polydnaviruses // Annals of the New York Academy of Sciences, 2009, V.1178, 1, 146156.

· #181

BeckageN.E. Games parasites play: the dynamic roles of proteins and peptides in the relationship between parasite and host // Parasites and Pathogens of Insects: Parasites. Academic Press, 1993, 2557.

· #182

WhitfieldJ.B., AsgariS. Virus or not? Phylogenetics of polydnaviruses and their wasp carriers // Journal of Insect Physiology, 2003, V.49, 5, 397405.

· #183

WhitfieldJ.B. Molecular and morphological data suggest a single origin of the polydnaviruses among braconid wasps // Naturwissenschaften, 1997, V.84, 11, 502507.

· #184

BezierA. et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus // Science, 2009, V.323, 5916, 926930.

· #185

VolkoffA.N. et al. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome // PLoS Pathogens, 2010, V.6, 5, e1000923.

· #186

StrandM.R., BurkeG.R. Polydnaviruses: natures genetic engineers // Annual Review of Virology, 2014, V.1, 333354.

· #187

StrandM.R., BurkeG.R. Polydnaviruses: from discovery to current insights // Virology, 2015, V.479, 393402.

· #188

VillarrealL.P. Can viruses make us human? // Proceedings of the American Philosophical Society, 2004, V.148, 3, 296323.

· #189

RoossinckM.J. The good viruses: viral mutualistic symbioses // Nature Reviews. Microbiology, 2011, V.9, 2, 99108.

· #190

ThurberR.V. et al. Virus-host interactions and their roles in coral reef health and disease // Nature Reviews Microbiology, 2017, V.15, 4, 205216.

· #191

OldstoneM.B.A. Prevention of type I diabetes in nonobese diabetic mice by virus infection // Science, 1988, V.239, 4839, 500503.

· #192

StoyeJ.P. Studies of endogenous retroviruses reveal a continuing evolutionary saga // Nature reviews. Microbiology, 2012, V.10, 6, 395406.

· #193

VillarrealL.P. et al. Virus-host symbiosis mediated by persistence // Symbiosis (Rehovot), 2007, V.44, 1/3, 19.

· #194

GregoryT.R. Synergy between sequence and size in large-scale genomics // Nature Reviews. Genetics, 2005, V.6, 699708.

· #195

Stoye, 2012.

· #196

LiW. et al. Human endogenous retrovirus-K contributes to motor neuron disease // Science Translational Medicine, 2015, V.7, 307, 307ra153-307ra153.

· #197

LagerS., PowellT.L. Regulation of nutrient transport across the placenta // Journal of Pregnancy, 2012, V.2012.

· #198

MessA., CarterA.M. Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria // Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 2006, V.306, 2, 140163.

· #199

DupressoirA., LavialleC., HeidmannT. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation // Placenta, 2012, Volume 33, Issue 9, 663671.

· #200

MagiorkinisG., Blanco-MeloD., BelshawR. The decline of human endogenous retroviruses: extinction and survival // Retrovirology, 2015, V.12, 1, 8.

· #201

MangheraM., FergusonJ., DouvilleR. Endogenous retrovirus-K and nervous system diseases // Current Neurology and Neuroscience Reports, 2014, V.14, 10, 488.

· #202

FisherR.A. The genetical theory of natural selection. Oxford University, 1930.

· #203

BouvierA., WadhwaM. The age of the Solar System redefined by the oldest Pb?Pb age of a meteoritic inclusion // Nature Geoscience, 2010, V.3, 637641.

· #204

LarsonR.E., BrommV. The first stars in the Universe // Scientific American, 2004, V.14, 4, 411.

· #205

GloverS. The first stars // The First Galaxies. Springer Berlin Heidelberg, 2013, 103174.

· #206

CameronA.G.W., TruranJ.W. The supernova trigger for formation of the solar system // Icarus, 1977, V.30, 3, 447461.

· #207

HesterJ.J. et al. The cradle of the solar system // Science, 2004, V.304, 5674, 11161117.

· #208

TachibanaS. et al. 60Fe in chondrites: Debris from a nearby supernova in the early Solar System? // The Astrophysical Journal Letters, 2006, V.639, 2, L87L90.

· #209

LegerA. et al. A new family of planets? Ocean-Planets // Icarus, 2004, V.169, 2, 499504.

· #210

Elkins-TantonL.T. Uranus, Neptune, Pluto, and the Outer Solar System. Chelsea House Publishers, 2006.

· #211

.., .. . .: , 2002.

· #212

RobertF. The origin of water on Earth // Science, 2001, V.293, 5532, 10561058.

· #213

RobertF. The origin of water on Earth // Science, 2001, V.293, 5532, 10561058.

· #214

HallidayA.N. The Origin of the Moon // Science, 2012, V.338, 6110, 10401041.

· #215

HartmannW.K. The giant impact hypothesis: past, present (and future?) // Philosophical Transactions of Royal Society, A: Mathematical, Physical and Engineering Sciences, 2014, V.372, 2024, 2013.0249.

· #216

DiAchilleG., HynekB.M. Ancient ocean on Mars supported by global distribution of deltas and valleys // Nature Geoscience, 2010, V.3, 459463.

· #217

HuberC., WachtershauserG. ?-Hydroxy and ?-amino acids under possible Hadean, volcanic origin-of-life conditions // Science, 2006, V.314, 5799, 630632.

· #218

MartinW., RussellM.J. On the origin of biochemistry at an alkaline hydrothermal vent // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2007, V.362, 1486, 18871926

· #219

RussellM.J. The alkaline solution to the emergence of life: energy, entropy and early evolution // Acta Biotheoretica, 2007, V.55, 2, 133179.

· #220

MulkidjanianA.Y. On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth // Biology Direct, 2009, V.4, 1, 26.

· #221

MulkidjanianA.Y., GalperinM.Y. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth // Biology Direct, 2009, V.4, 1, 27.

· #222

WachtershauserG. On the chemistry and evolution of the pioneer organism // Chemistry & Biodiversity, 2007, V.4, 4, 584602.

· #223

.. . .: , 1969.

· #224

HuberC., EisenreichW., Wachtersh?userG. Synthesis of ?-amino and ?-hydroxy acids under volcanic conditions: implications for the origin of life // Tetrahedron Letters, 2010, V.51, 7, 10691071.

· #225

WachtershauserG. Origin of life: RNA world versus autocatalytic anabolist // The Prokaryotes. Springer Berlin Heidelberg, 2013. 8188.

· #226

, , : . . . .: -, 2018.

· #227

LeipeD.D., AravindL., KooninE.V. Did DNA replication evolve twice independently? // Nucleic Acids Research, 1999, V.27, 17, 33893401.

· #228

TakeuchiN., HogewegP. Evolutionary dynamics of RNA-like replicator systems: a bioinformatic approach to the origin of life // Physics of Life Reviews, 2012, V.9, 3, 219263.

· #229

.., .. . .: , 1992.

· #230

.. . .: , 1996.

· #231

.. . .: , 1960. . 1.

· #232

WilldenowK.L. The principles of botany, and of vegetable physiology. Edinburgh, University Press, 1805.

· #233

EllisJ. On the Nature and Formation of Sponges: In a Letter from John Ellis, Esquire, FRS to Dr.Solander, FRS // Philosophical Transactions, 1765, V.55, 280289.

· #234

RaganM.A. A third kingdom of eukaryotic life: History of an idea // Archiv fur Protistenkunde, 1997, V.148, 3, 225243.

· #235

SappJ. Genesis: the evolution of biology. Oxford University Press (USA), 2003.

· #236

HoggJ. On the distinctions of a plant and an animal, and on a fourth kingdom of nature // The Edinburgh New Philosophical Journal, 1860, V.12.

· #237

SappJ. The new foundations of evolution: on the tree of life. Oxford University Press (USA), 2009.

· #238

CopelandH.F. The kingdoms of organisms // The Quarterly Review of Biology, 1938, V.13, 4, 383420.

· #239

KatscherF. The history of the terms prokaryotes and eukaryotes // Protist, 2004, V.155, 2, 257263.

· #240

WhittakerR.H. New concepts of kingdoms of organisms // Science, 1969, V.163, 3863, 150160.

· #241

HennigW. Phylogenetic systematics // Annual Review of Entomology, 1965, V.10, 1, 97116.

· #242

.. . . .: , 2000.

· #243

LeedaleG.F. How many are the kingdoms of organisms? // Taxon, 1974, V.23, 2/3, 261270.

· #244

WatanabeY. et al. Introns in protein-coding genes in Archaea // FEBS Letters, 2002, V.510, 1/2, 2730.

· #245

WoeseC.R., KandlerO., WheelisM.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya // Proceedings of the National Academy of Sciences, 1990, V.87, 12, 45764579.

· #246

StanierR.Y., Van NielC.B. The concept of a bacterium // Archiv fur Mikrobiologie, 1962, V.42, 1, 1735.

· #247

WoeseC.R., FoxG.E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms // Proceedings of the National Academy of Sciences, 1977, V.74, 11, 50885090.

· #248

WilliamsT.A. et al. An archaeal origin of eukaryotes supports only two primary domains of life // Nature, 2013, V.504, 231236.

· #249

HugL.A. et al. A new view of the tree of life // Nature Microbiology, 2016, V.1, 16048.

· #250

GribaldoS. et al. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? // Nature Reviews. Microbiology, 2010, V.8, 10, 743752.

· #251

EmbleyT.M., WilliamsT.A. Steps on the road to eukaryotes // Nature, 2015, V.521, 169170.

· #252

Zaremba-NiedzwiedzkaK. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity // Nature, 2017, V.541, 353358.

· #253

, , , Monocercomonoides, Excavata. , - . KarnkowskaA. et al. A eukaryote without a mitochondrial organelle // Current Biology, 2016, V.26, 10, 12741284.

· #254

FuerstJ.A. Intracellular compartmentation in planctomycetes // Annual Review of Microbiology, 2005, V.59, 299328.

· #255

FuerstJ.A. Beyond prokaryotes and eukaryotes: planctomycetes and cell organization // Nature Education, 2010, V.3, 9, 44.

· #256

McInerneyJ.O. et al. Planctomycetes and eukaryotes: a case of analogy not homology // Bioessays, 2011, V.33, 11, 810817.

· #257

YutinN. et al. The origins of phagocytosis and eukaryogenesis // Biology Direct, 2009, V.4, 1, 9.

· #258

BaumD.A., BaumB. An inside-out origin for the eukaryotic cell // BMC Biology, 2014, V.12, 1, 76.

· #259

SoginM.L. Early evolution and the origin of eukaryotes // Current Opinion in Genetics & Development, 1991, V.1, 4, 457463.

· #260

GuptaR.S. et al. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum // Proceedings of the National Academy of Sciences, 1994, V.91, 8, 28952899.

· #261

LakeJ.A., RiveraM.C. Was the nucleus the first endosymbiont? // Proceedings of the National Academy of Sciences, 1994, V.91, 8, 28802881.

· #262

MoreiraD., Lopez-GarciaP. Symbiosis between methanogenic archaea and ?-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis // Journal of Molecular Evolution, 1998, V.47, 5, 517530.

· #263

Lopez-GarciaP., MoreiraD. Metabolic symbiosis at the origin of eukaryotes // Trends in Biochemical Sciences, 1999, V.24, 3, 8893.

· #264

LakeJ.A. Eukaryotic origins // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2015, V.370, 1678, 20140321.

· #265

Lopez-GarciaP., MoreiraD. Open questions on the origin of eukaryotes // Trends in Ecology & Evolution, 2015, V.30, 11, 697708.

· #266

GuptaR.S., GoldingG.B. The origin of the eukaryotic cell // Trends in Biochemical Sciences, 1996, V.21, 5, 166171.

· #267

Lopez-Garcia, Moreira, 2015.

· #268

.

· #269

.., A.M. : // . : , 2005.

· #270

TakishitaK., InagakiY. Eukaryotic origin of glyceraldehyde-3-phosphate dehydrogenase genes in Clostridium thermocellum and Clostridium cellulolyticum genomes and putative fates of the exogenous gene in the subsequent genome evolution // Gene, 2009, V.441, 1, 2227.

· #271

Nelson-SathiS. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria // Nature, 2015, V.517, 7780.

· #272

ShimadaH., YamagishiA. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids // Biochemistry, 2011, V.50, 19, 41144120.

· #273

HartmanH., FedorovA. The origin of the eukaryotic cell: a genomic investigation // Proceedings of the National Academy of Sciences, 2002, V.99, 3, 14201425.

· #274

TaylorF.J.R. Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes // BioSystems, 1978, V.10, 1/2, 6789.

· #275

SchulzeF.E. XXXII. On the relationship of the sponges to the Choanoflagellata // Journal of Natural History, 1885, V.15, 89, 365377.

· #276

Cavalier-SmithT. Eukaryote kingdoms: seven or nine? // BioSystems, 1981, V.14, 3/4, 461481

· #277

Cavalier-SmithT. The origin of eukaryote and archaebacterial cells // Annals of the New York Academy of Sciences, 1987, V.503, 1, 1754.

· #278

BaroinA. et al. Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA // Proceedings of the National Academy of Sciences, 1988, V.85, 10, 34743478.

· #279

LynnD.H., SoginM.L. Assessment of phylogenetic relationships among ciliated protists using partial ribosomal RNA sequences derived from reverse transcripts // BioSystems, 1988, V.21, 3/4, 249254.

· #280

MollenhauerD. Adolf Pascher (18811945) Romantic Phycologist // Protist, 2001, V.152, 3, 231238.

· #281

BaldaufS.L. et al. A kingdom-level phylogeny of eukaryotes based on combined protein data // Science, 2000, V.290, 5493, 972977.

· #282

BaldaufS.L. The deep roots of eukaryotes // Science, 2003, V.300, 5626, 17031706.

· #283

AdlS.M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists // Journal of Eukaryotic Microbiology, 2005, V.52, 5, 399451.

· #284

KeelingP.J. et al. The tree of eukaryotes // Trends in Ecology & Evolution, 2005, V.20, 12, 670676.

· #285

BaldaufS.L. An overview of the phylogeny and diversity of eukaryotes // Journal of Systematics and Evolution, 2008, V.46, 3, 263273.

· #286

KooninE.V. The origin and early evolution of eukaryotes in the light of phylogenomics // Genome Biology, 2010, V.11, 5, 209.

· #287

AdlS.M. et al. The revised classification of eukaryotes // Journal of Eukaryotic Microbiology, 2012, V.59, 5, 429514.

· #288

.. : . ( 2-). , 2014.

· #289

.. : // . 2013. . 317, 2, 938.

· #290

SimpsonA.G.B., RogerA.J. The real kingdoms of eukaryotes // Current Biology, 2004, V.14, 17, R693 R696.

· #291

KeelingP.J. Diversity and evolutionary history of plastids and their hosts // American Journal of Botany, 2004, V.91, 10, 14811493.

· #292

MullnerA.N. et al. Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence // International Journal of Systematic and Evolutionary Microbiology, 2001, V.51, 3, 783791.

· #293

MarinB. Origin and fate of chloroplasts in the euglenoida // Protist, 2004, V.155, 1, 1314.

· #294

PringsheimE.G., HovasseR. The loss of chromatophores in Euglena gracilis // New Phytologist, 1948, V.47, 1, 5287.

· #295

KoliskoM. et al. A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine / saline habitats // Environmental Microbiology, 2010, V.12, 10, 27002710.

· #296

HongohY. et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut // Science, 2008, V.322, 5904, 11081109.

· #297

CarpenterK.J., KeelingP.J. Morphology and phylogenetic position of Eucomonympha imla (Parabasalia: Hypermastigida) // Journal of Eukaryotic Microbiology, 2007, V.54, 4, 325332.

· #298

MisofB. et al. Phylogenomics resolves the timing and pattern of insect evolution // Science, 2014, V.346, 6210, 763767.

· #299

SutherlandJ.L. et al. Protozoa from Australian termites // Quarterly Journal of Microscopic Science, 1933, V.76, 145173.

· #300

WenzelM. et al. Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis // European Journal of Protistology, 2003, V.39, 1, 1123.

· #301

MargulisL. The conscious cell // Annals of the New York Academy of Sciences, 2001, V.929, 1, 5570.

· #302

RadekR., NitschG. Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: attachment and cyst formation // European Journal of Protistology, 2007, V.43, 4, 281294.

· #303

BrugerolleG. Devescovinid features, a remarkable surface cytoskeleton, and epibiotic bacteria revisited in Mixotricha paradoxa, a parabasalid flagellate // Protoplasma, 2004, V.224, 1, 4959.

· #304

WierA. et al. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber // Proceedings of the National Academy of Sciences, 2002, V.99, 3, 14101413.

· #305

.. // . 2002. 1.

· #306

.. . : , 1986.

· #307

KeelingP.J. The endosymbiotic origin, diversification and fate of plastids // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2010, V.365, 1541, 729748.

· #308

BeakesG.W., GlocklingS.L., SekimotoS. The evolutionary phylogeny of the oomycete fungi // Protoplasma, 2012, V.249, 1, 319.

· #309

TurnerA. Microscopical advances: the posterity of Huygens simple microscope of 1678 // ENDOXA, 2004, V.1, 19, 4158.

· #310

HadziJ. An attempt to reconstruct the system of animal classification // Systematic Zoology, 1953, V.2, 4, 145154.

· #311

LeanderB.S. et al. Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans // Journal of Eukaryotic Microbiology, 2003, V.50, 5, 334340.

· #312

ObornikM. et al. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again // International Journal for Parasitology, 2009, V.39, 1, 112.

· #313

Adl et al., 2005.

· #314

Cavalier-SmithT. A revised six-kingdom system of life // Biological Reviews, 1998, V.73, 3, 203266.

· #315

FinetC. et al. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants // Current Biology, 2010, V.20, 24, 22172222.

· #316

WickettN.J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants // Proceedings of the National Academy of Sciences, 2014, V.111, 45, E4859 E4868.

· #317

GrahamL.E. et al. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land // American Journal of Botany, 2012, V.99, 1, 130144.

· #318

.. // . .: , 1993.

· #319

KenrickB. Alternation of generations in land plants: new phylogenetic and palaeobotanical evidence // Biological Reviews, 1994, V.69, 3, 293330.

· #320

GrahamL.E., CookM.E., BusseJ.S. The origin of plants: body plan changes contributing to a major evolutionary radiation // Proceedings of the National Academy of Sciences, 2000, V.97, 9, 45354540.

· #321

.. Metazoa // . 2014. . 75. 6, 411465.

· #322

FritzschB., StrakaH. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies // Journal of Comparative Physiology A, 2014, V.200, 1, 518.

· #323

PenaJ.F. et al. Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges // EvoDevo, 2016, V.7, 1, 13.

· #324

JamesT.Y., BerbeeM.L. No jacket required new fungal lineage defies dress code // Bioessays, 2012, V.34, 2, 94102.

· #325

KarpovS.A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi // Protist, 2013, V.164, 2, 195205.

· #326

KarpovS.A. et al. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia // Frontiers in Microbiology, 2014, V.5, 112.

· #327

MendozaL., TaylorJ.W., AjelloL. The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary // Annual Reviews in Microbiology, 2002, V.56, 1, 315344.

· #328

SugaH., Ruiz-TrilloI. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity // Developmental Biology, 2013, V.377, 1, 284292.

· #329

PapsJ., Ruiz-TrilloI. Animals and their unicellular ancestors // eLS, 2010.

· #330

Sebe-PedrosA. et al. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki // Molecular Biology and Evolution, 2010, V.28, 3, 12411254.

· #331

Sebe-PedrosA., Ruiz-TrilloI. Evolution and Classification of the T-Box Transcription Factor Family // Current Topics in Developmental Biology, 2017, V.122, 126.

· #332

Sebe-PedrosA. et al. Early evolution of the T-box transcription factor family // Proceedings of the National Academy of Sciences, 2013, V.110, 40, 1605016055.

· #333

MikhailovK.V. et al. The origin of Metazoa: a transition from temporal to spatial cell differentiation // Bioessays, 2009, V.31, 7, 758768.

· #334

PapsJ. et al. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts // Protist, 2013, V.164, 1, 212.

· #335

Sebe-PedrosA., DegnanB.M., Ruiz-TrilloI. The origin of Metazoa: a unicellular perspective // Nature Reviews. Genetics, 2017, V.18, 498512.

· #336

JamesT.Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny // Nature, 2006, V.443, 818822.

· #337

XuH. et al. The ?-aminoadipate pathway for lysine biosynthesis in fungi // Cell Biochemistry and Biophysics, 2006, V.46, 1, 4364.

· #338

VogelH.J. Distribution of lysine pathways among fungi: evolutionary implications // The American Naturalist, 1964, V.98, 903, 435446.

· #339

MorozL.L. On the independent origins of complex brains and neurons // Brain, Behavior and Evolution, 2009, V.74, 3, 177190.

· #340

MorozL.L. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature, 2014, V.510, 7503, 109114.

· #341

JekelyG., PapsJ., NielsenC. The phylogenetic position of ctenophores and the origin (s) of nervous systems // EvoDevo, 2015, V.6, 1, 1.

· #342

.. // , 2016, . 42, 4, 249259.

· #343

HollandP.W.H. Did homeobox gene duplications contribute to the Cambrian explosion? // Zoological Letters, 2015, V.1, 1, 1.

· #344

Adl et al., 2005.

· #345

ButterfieldN.J. Early evolution of the Eukaryota // Palaeontology, 2015, V.58, 1, 517.

· #346

BurkiF. et al. Phylogenomics reshuffles the eukaryotic supergroups // PloS One, 2007, V.2, 8, e790.

· #347

HackettJ.D. et al. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates // Molecular Biology and Evolution, 2007, V.24, 8, 17021713.

· #348

HeD. et al. Reducing long-branch effects in multi-protein data uncovers a close relationship between Alveolata and Rhizaria // Molecular Phylogenetics and Evolution, 2016, V.101, 17.

· #349

Adl et al., 2012.

· #350

BurkiF. et al. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins // Proceedings of the Royal Society of London, B: Biological Sciences, 2012, rspb20112301.

· #351

Cavalier-SmithT. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree // Biology Letters, 2010, V.6, 3, 342345.

· #352

Cavalier-SmithT. Protist phylogeny and the high-level classification of Protozoa // European Journal of Protistology, 2003, V.39, 4, 338348.

· #353

StechmannA., Cavalier-SmithT. The root of the eukaryote tree pinpointed // Current Biology, 2003, V.13, 17, R665 R666.

· #354

Cavalier-SmithT. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations // Journal of Eukaryotic Microbiology, 2009, V.56, 1, 2633.

· #355

RogerA.J., SimpsonA.G.B. Evolution: revisiting the root of the eukaryote tree // Current Biology, 2009, V.19, 4, R165 R167.

· #356

Burki et al., 2007.

· #357

Baldauf, 2008.

· #358

HamplV. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic supergroups // Proceedings of the National Academy of Sciences, 2009, V.106, 10, 38593864.

· #359

HeD. et al. An alternative root for the eukaryote tree of life // Current Biology, 2014, V.24, 4, 465470.

· #360

Adl et al., 2012.

· #361

Cavalier-SmithT. Deep phylogeny, ancestral groups and the four ages of life // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2010, V.365, 1537, 111132.

· #362

Cavalier-SmithT. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa // European Journal of Protistology, 2013, V.49, 2, 115178.

· #363

Cavalier-SmithT. Symbiogenesis: mechanisms, evolutionary consequences, and systematic implications // Annual Review of Ecology, Evolution, and Systematics, 2013a, V.44, 145172.

· #364

Cavalier-SmithT. et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa // Molecular Phylogenetics and Evolution, 2014, V.81, 7185.

· #365

Cavalier-SmithT. Origin of animal multicellularity: precursors, causes, consequences the choanoflagellate / sponge transition, neurogenesis and the Cambrian explosion // Philosophical Transactions of the Royal Society, B: Biological Sciences, 2017, V.372, 1713.

· #366

Cavalier-Smith, 2009.

· #367

Cavalier-SmithT. The origins of plastids // Biological Journal of the Linnean Society, 1982, V.17, 3, 289306.

· #368

Cavalier-Smith, 2013a.

· #369

KeelingP.J. Diversity and evolutionary history of plastids and their hosts // American Journal of Botany, 2004, V.91, 10, 14811493.

· #370

BurkiF. The eukaryotic tree of life from a global phylogenomic perspective // Cold Spring Harbor. Perspectives in Biology, 2014, V.6, 5, a016147.

· #371

Adl et al., 2012.

· #372

BurkiF., Shalchian-TabriziK., PawlowskiJ. Phylogenomics reveals a new megagroup including most photosynthetic eukaryotes // Biology Letters, 2008, V.4, 4, 366369.

· #373

Hampl et al., 2009.

· #374

Adl et al., 2012.

· #375

GermotA., PhilippeH. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family // Journal of Eukaryotic Microbiology, 1999, V.46, 2, 116124.

· #376

Germot, Philippe, 1999.

· #377

PhilippeH., GermotA., MoreiraD. The new phylogeny of eukaryotes // Current Opinion in Genetics & Development, 2000, V.10, 6, 596601.

· #378

PhilippeH. Early branching or fast evolving eukaryotes? An answer based on slowly evolving positions // Proceedings of the Royal Society of London, B: Biological Sciences, 2000, V.267, 1449, 12131221.

· #379

Philippe, 2000.

· #380

Philippe et al., 2000. . ( , ).

· #381

Baldauf, 2003.

· #382

.., .. . .: , 1977.

· #383

SimpsonG.G. Periodicity in vertebrate evolution // Journal of Paleontology, 1952, V.26, 3, 359370.

· #384

ColbertE.H. Explosive evolution // Evolution, 1953, V.7, 1, 8990.

· #385

ChalineJ. Rodents, evolution, and prehistory // Endeavour, 1977, V.1, 2, 4451.

· #386

RokasA., CarrollS.B. Bushes in the tree of life // PLoS Biology, 2006, V.4, 11, e352.

· #387

PawlowskiJ. The new micro-kingdoms of eukaryotes // BMC Biology, 2013, V.11, 1, 40.

· #388

WalkerG., DacksJ.B., Martin EmbleyT. Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as Mastigamoeba invertens // Journal of Eukaryotic Microbiology, 2006, V.53, 2, 6578.

· #389

HeissA.A., WalkerG., SimpsonA.G.B. The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity // European Journal of Protistology, 2013, V.49, 3, 354372.

· #390

MingeM.A. et al. Evolutionary position of breviate amoebae and the primary eukaryote divergence // Proceedings of the Royal Society of London, B: Biological Sciences, 2009, V.276, 1657, 597604.

· #391

Burki, 2014.

· #392

BrownM.W. et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads // Proceedings of the Royal Society of London, B: Biological Sciences, 2013, V.280, 1769, 20131755.

· #393

Cavalier-Smith, 2009.

· #394

Cavalier-SmithT., ChaoE.E. Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species // Protist, 2010, V.161, 4, 549576.

· #395

TorruellaG., MoreiraD., Lopez-GarciaP. Phylogenetic and ecological diversity of apusomonads, a lineage of deep-branching eukaryotes // Environmental Microbiology Reports, 2017, V.9, 2, 113119.

· #396

Brown et al., 2013.

· #397

PapsJ. et al. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts // Protist, 2013, V.164, 1, 212.

· #398

Cavalier-Smith et al., 2014.

· #399

AtkinsM.S., McArthurA.G., TeskeA.P. Ancyromonadida: a new phylogenetic lineage among the protozoa closely related to the common ancestor of metazoans, fungi, and choanoflagellates (Opisthokonta) // Journal of Molecular Evolution, 2000, V.51, 3, 278285.

· #400

CarterH.J. XXXII. On the fresh-and salt-water Rhizopoda of England and India // Journal of Natural History, 1865, V.15, 88, 277293.

· #401

BrugerolleG. et al. Collodictyon triciliatum and Diphylleia rotans (= Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups // Protist, 2002, V.153, 1, 5970.

· #402

ZhaoS. et al. Collodictyon an ancient lineage in the tree of eukaryotes // Molecular Biology and Evolution, 2012, V.29, 6, 15571568.

· #403

Brown et al., 2013.

· #404

Burki, 2014.

· #405

Cavalier-SmithT. et al. Multigene phylogeny resolves deep branching of Amoebozoa // Molecular Phylogenetics and Evolution, 2015, V.83, 293304.

· #406

Burki, 2014.

· #407

.., .., .. // . : , 1991. . 130139.

· #408

CorlissJ.O. The kingdom Protista and its 45 phyla // BioSystems, 1984, V.17, 2, 87126.

· #409

CorlissJ.O. Protistan diversity and origins of multicellular / multitissued organisms // Italian Journal of Zoology, 1989, V.56, 3, 227234.

· #410

DickinsonD.J., NelsonW.J., WeisW.I. An epithelial tissue in Dictyostelium challenges the traditional origin of metazoan multicellularity // BioEssays, 2012, V.34, 10, 833840.

· #411

DickinsonD.J., NelsonW.J., WeisW.I. Studying epithelial morphogenesis in Dictyostelium // Tissue morphogenesis: methods and protocols. Springer New York, 2015. 267281.

· #412

MillerP.W. et al. The evolutionary origin of epithelial cell-cell adhesion mechanisms // Current Topics in Membranes, 2013, V.72, 267311.

· #413

WorleyA.C., RaperK.B., HohlM. Fonticula alba: a new cellular slime mold (Acrasiomycetes) // Mycologia, 1979, V.71, 4, 746760.

· #414

DeaseyM.C. Spore formation by the cellular slime mold Fonticula alba // Mycologia, 1982, V.74, 4, 607613.

· #415

BrownM.W., SpiegelF.W., SilbermanJ.D. Phylogeny of the forgotten cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta // Molecular Biology and Evolution, 2009, V.26, 12, 26992709.

· #416

Paps, Ruiz-Trillo, 2010.

· #417

BrownM.W. et al. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria // Current Biology, 2012, V.22, 12, 11231127.

· #418

Mikhailov et al., 2009.

· #419

.. . . .: , 1979.

· #420

KirschnerM., GerhartJ. Evolvability // Proceedings of the National Academy of Sciences, 1998, V.95, 15, 84208427.

· #421

RupkeN.A. Richard Owens vertebrate archetype // Isis, 1993, V.84, 2, 231251.

· #422

, . ( ) . , , : , , , , .

· #423

De DuveC. Constraints on the origin and evolution of life // Proceedings of the American Philosophical Society, 1998, V.142, 4, 525532.

· #424

FedoC.M., WhitehouseM.J. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earths Earliest Life // Science, 2002, V.296, 5572, 14481452.

· #425

NutmanA.P. et al. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures // Nature, 2016, V.537, 535538.

· #426

BellE.A. et al. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon // Proceedings of the National Academy of Sciences, 2015, V.112, 47, 1451814521.

· #427

HarrisonT.M., BellE.A., BoehnkeP. Hadean zircon petrochronology // Reviews in Mineralogy and Geochemistry, 2017, V.83, 1, 329363.

· #428

WoeseC.R. On the evolution of cells // Proceedings of the National Academy of Sciences, 2002, V.99, 13, 87428747.

· #429

WaceyD. et al. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia // Nature Geoscience, 2011, V.4, 10, 698702.

· #430

SessionsA.L. et al. The continuing puzzle of the great oxidation event // Current Biology, 2009, V.19, 14, R567R574.

· #431

SchopfJ.W. The fossil record of cyanobacteria // Ecology of cyanobacteria II. Springer Netherlands, 2012. 1536.

· #432

BarbieriM. Code Biology. A New Science of Life. Springer, 2015.

· #433

LyonsT.W., ReinhardC.T., PlanavskyN.J. The rise of oxygen in Earths early ocean and atmosphere // Nature, 2014, V.506, 307315.

· #434

EsserC. et al. A genome phylogeny for mitochondria among ?-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes // Molecular Biology and Evolution, 2004, V.21, 9, 16431660.

· #435

.. . .: , 2014.

· #436

.., A.M. : // . : , 2005.

· #437

., . . .: , 2016.

· #438

WangY., WangY., DuW. The long-ranging macroalga Grypania spiralis from the Ediacaran Doushantuo Formation, Guizhou, South China // Alcheringa: An Australasian Journal of Palaeontology, 2016, V.40, 3, 303312.

· #439

ButterfieldN.J. Early evolution of the Eukaryota // Palaeontology, 2015, V.58, 1, 517.

· #440

RetallackG.J. et al. Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa // Precambrian Research, 2013, V.235, 7187.

· #441

El AlbaniA. et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago // Nature, 2010, V.466, 100104.

· #442

KnollA.H. et al. Eukaryotic organisms in Proterozoic oceans // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2006, V.361, 1470, 10231038.

· #443

BengtsonS. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt // Nature Ecology & Evolution, 2017, V.1, 0141.

· #444

RasmussenB. et al. Reassessing the first appearance of eukaryotes and cyanobacteria // Nature, 2008, V.455, 7216, 11011104.

· #445

KoppR.E. et al. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis // Proceedings of the National Academy of Sciences, 2005, V.102, 32, 1113111136.

· #446

KnollA.H. et al. Eukaryotic organisms in Proterozoic oceans // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2006, V.361, 1470, 10231038.

· #447

ButterfieldN.J. Probable proterozoic fungi // Paleobiology, 2005, V.31, 1, 165182.

· #448

RetallackG.J. et al. Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa // Precambrian Research, 2013, V.235, 7187.

· #449

NursallJ.R. Oxygen as a prerequisite to the origin of the Metazoa // Nature, 1959, V.183, 11701172.

· #450

MillsD.B. et al. Oxygen requirements of the earliest animals // Proceedings of the National Academy of Sciences, 2014, V.111, 11, 41684172.

· #451

SperlingE.A., KnollA.H., GirguisP.R. The ecological physiology of Earths second oxygen revolution // Annual Review of Ecology, Evolution, and Systematics, 2015, V.46, 215235.

· #452

HarlandW.B., RudwickM.J.S. The great infra-Cambrian ice age // Scientific American, 1964, V.211, 2836.

· #453

BudykoM.I. The effect of solar radiation variations on the climate of the earth // Tellus, 1969, V.21, 5, 611619.

· #454

.., .. . .: , 1995.

· #455

DonnadieuY. et al. A snowball Earth climate triggered by continental break-up through changes in runoff // Nature, 2004, V.428, 303306.

· #456

HoffmanP.F., SchragD.P. Snowball Earth // Scientific American, 1999, 9.

· #457

.. . .: , 2000.

· #458

KirschvinkJ.L. Red Earth, White Earth, Green Earth, Black Earth // Engineering and Science, 2005, V.68, 4, 1020.

· #459

ChenL. et al. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils // Nature, 2014, V.516, 238241.

· #460

SeilacherA. Evolutionary innovation versus ecological incumbency // Planetary Systems and the Origins of Life. Cambridge, 2007. 193209.

· #461

SperlingE.A., VintherJ. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes // Evolution & Development, 2010, V.12, 2, 201209.

· #462

TangF. et al. Eoandromeda and the origin of Ctenophora // Evolution & Development, 2011, V.13, 5, 408414.

· #463

IvantsovA.Y. New reconstruction of Kimberella, problematic Vendian metazoan // Paleontological Journal, 2009, V.43, 6, 601611.

· #464

SeilacherA., HagadornJ.W. Early molluscan evolution: evidence from the trace fossil record // Palaios, 2010, V.25, 9, 565575.

· #465

MartinM.W. et al. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution // Science, 2000, V.288, 5467, 841845.

· #466

BuddG.E. The earliest fossil record of the animals and its significance // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2008, V.363, 1496, 14251434.

· #467

XiaoS., LaflammeM. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota // Trends in Ecology & Evolution, 2009, V.24, 1, 3140.

· #468

GregoryJ.W., BarrettB.H. The major terms of the pre-Paleozoic // The Journal of Geology, 1927, V.35, 8, 734742.

· #469

ShuD. On the phylum Vetulicolia // Chinese Science Bulletin, 2005, V.50, 20, 23422354.

· #470

.. // . 2006. 12.

· #471

ErwinD.H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals // Science, 2011, V.334, 6059, 10911097.

· #472

WheatC.W., WahlbergN. Phylogenomic insights into the Cambrian explosion, the colonization of land and the evolution of flight in Arthropoda // Systematic Biology, 2012, V.62, 1, 93109.

· #473

LeeM.S.Y., SoubrierJ., EdgecombeG.D. Rates of phenotypic and genomic evolution during the Cambrian explosion // Current Biology, 2013, V.23, 19, 18891895.

· #474

BuddG.E., JacksonI.S.C. Ecological innovations in the Cambrian and the origins of the crown group phyla // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2016, V.371, 1685, 20150287.

· #475

IsozakiY. et al. Beyond the Cambrian explosion: from galaxy to genome // Gondwana Research, 2014, V.3, 25, 881883.

· #476

BrennanS.T., LowensteinT.K., HoritaJ. Seawater chemistry and the advent of biocalcification // Geology, 2004, V.32, 6, 473476.

· #477

SeilacherA. Biomat-related lifestyles in the Precambrian // Palaios, 1999, V.14, 1, 8693.

· #478

McMenaminM.A.S. The garden of Ediacara // Palaios, 1986, V.1, 2, 178182.

· #479

LaflammeM., XiaoS., KowalewskiM. Osmotrophy in modular Ediacara organisms // Proceedings of the National Academy of Sciences, 2009, V.106, 34, 1443814443.

· #480

StanleyS.M. An ecological theory for the sudden origin of multicellular life in the late Precambrian // Proceedings of the National Academy of Sciences, 1973, V.70, 5, 14861489.

· #481

BottjerD.J., HagadornJ.W., DornbosS.Q. The Cambrian substrate revolution // GSA Today, 2000, V.10, 9, 17.

· #482

ButterfieldN.J. Plankton ecology and the Proterozoic-Phanerozoic transition // Paleobiology, 1997, V.23, 2, 247262.

· #483

.. . Pancrustacea // . 2009. . 43. 5. 866881.

· #484

.., .. : // , . .: , 2009.

· #485

ButterfieldN.J. Oxygen, animals and oceanic ventilation: an alternative view // Geobiology, 2009, V.7, 1, 17.

· #486

ZhangX. et al. Triggers for the Cambrian explosion: hypotheses and problems // Gondwana Research, 2014, V.25, 3, 896909.

· #487

ReynoldsP.D. The scaphopoda // Advances in Marine Biology, 2002, V.42, 137236.

· #488

MulkidjanianA.Y. et al. Origin of first cells at terrestrial, anoxic geothermal fields // Proceedings of the National Academy of Sciences, 2012, V.109, 14, E821?E830.

· #489

Beraldi-CampesiH., RetallackG.J. Terrestrial ecosystems in the Precambrian // Biological soil crusts: an organizing principle in drylands. Springer International Publishing, 2016. 3754.

· #490

HorodyskiR.J., Knauth, L. P. Life on Land in the Precambrian // Science, 1994, V.263, 5146, 494498.

· #491

StrotherP.K. et al. Earths earliest non-marine eukaryotes // Nature, 2011, V.473, 7348, 505509.

· #492

Beraldi-CampesiH. Early life on land and the first terrestrial ecosystems // Ecological Processes, 2013, V.2, 1, 1.

· #493

KennedyM. et al. Late Precambrian oxygenation; inception of the clay mineral factory // Science, 2006, V.311, 5766, 14461449.

· #494

YuanX., XiaoS., TaylorT.N. Lichen-like symbiosis 600 million years ago // Science, 2005, V.308, 5724, 10171020.

· #495

SteemansP. et al. Origin and radiation of the earliest vascular land plants // Science, 2009, V.324, 5925, 353353.

· #496

GrahamL. et al. Early terrestrialization: transition from algal to bryophyte grade // Photosynthesis in bryophytes and early land plants. Springer Netherlands, 2014. 928.

· #497

WellmanC.H. The nature and evolutionary relationships of the earliest land plants // New Phytologist, 2014, V.202, 1, 13.

· #498

KenrickP. et al. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2012, V.367, 1588, 519536.

· #499

WilsonH.M. Juliformian millipedes from the Lower Devonian of Euramerica: implications for the timing of millipede cladogenesis in the Paleozoic // Journal of Paleontology, 2006, V.80, 4, 638649.

· #500

AndersonL.I., TrewinN.H. An early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland // Palaeontology, 2003, V.46, 3, 467509.

· #501

AhlbergP.E., ClackJ.A. Palaeontology: a firm step from water to land // Nature, 2006, V.440, 747749.

· #502

SeldenP.A., PenneyD. Fossil spiders // Biological Reviews, 2010, V.85, 1, 171206.

· #503

GarrousteR. et al. A complete insect from the Late Devonian period // Nature, 2012, V.487, 7409, 8285.

· #504

ProkopJ., NelA., HochI. Discovery of the oldest known Pterygota in the lower Carboniferous of the Upper Silesian Basin in the Czech Republic (Insecta: Archaeorthoptera) // Geobios, 2005, V.38, 3, 383387.

· #505

Meyer-BerthaudB., SoriaA., DecombeixA.L. The land plant cover in the Devonian: a reassessment of the evolution of the tree habit // Geological Society, London, Special Publications, 2010, V.339, 1, 5970.

· #506

Meyer-BerthaudB., SchecklerS.E., WendtJ. Archaeopteris is the earliest known modern tree // Nature, 1999, V.398, 6729, 700701.

· #507

RetallackG.J. Afforestation of the land // Soils of the Past. Springer Netherlands, 1990, 399421.

· #508

FieldingC.R., FrankT.D., IsbellJ.L. The late Paleozoic ice age a review of current understanding and synthesis of global climate patterns // Geological Society of America Special Papers, 2008, V.441, 343354.

· #509

RaupD.M. Size of the Permo-Triassic bottleneck and its evolutionary implications // Science, 1979, V.206, 4415, 217218.

· #510

BowringS.A. et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction // Science, 1998, V.280, 5366, 10391045.

· #511

RaupD.M., SepkoskiJ.J. Mass extinctions in the marine fossil record // Science, 1982, V.215, 4539, 15011503.

· #512

BambachR.K. Phanerozoic biodiversity mass extinctions // Annual Review of Earth and Planetary Sciences, 2006, V.34, 127155.

· #513

.. . : , 1986.

· #514

BentonM.J. et al. Diversification and extinction in the history of life // Science, 1995, V.268, 5207, V.5258.

· #515

SahneyS., BentonM.J. Recovery from the most profound mass extinction of all time // Proceedings of the Royal Society of London, B: Biological Sciences, 2008, V.275, 1636, 759765.

· #516

BurgessS.D., BowringS., ShenS. High-precision timeline for Earths most severe extinction // Proceedings of the National Academy of Sciences, 2014, V.111, 9, 33163321.

· #517

KumpL.R., PavlovA., ArthurM.A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia // Geology, 2005, V.33, 5, 397400.

· #518

., . . .: , 2016.

· #519

BentonM.J., TwitchettR.J. How to kill (almost) all life: the end-Permian extinction event // Trends in Ecology & Evolution, 2003, V.18, 7, 358365.

· #520

KnollA.H. et al. Paleophysiology and end-Permian mass extinction // Earth and Planetary Science Letters, 2007, V.256, 3, 295313.

· #521

SunY. et al. Lethally hot temperatures during the Early Triassic greenhouse // Science, 2012, V.338, 6105, 366370.

· #522

HueyR.B., WardP.D. Hypoxia, global warming, and terrestrial Late Permian extinctions // Science, 2005, V.308, 5720, 398401.

· #523

BentonM.J., NewellA.J. Impacts of global warming on Permo-Triassic terrestrial ecosystems // Gondwana Research, 2014, V.25, 4, 13081337.

· #524

.. // . 2012. 9.

· #525

SepkoskiJ.J. Biodiversity: past, present, and future // Journal of Paleontology, 1997, V.71, 4, 533539.

· #526

. . . .: , 2014.

· #527

WilsonE.O. Some central problems of sociobiology // Social Science Information, 1975, V.14, 6, 518.

· #528

WilsonE.O., HolldoblerB. The rise of the ants: a phylogenetic and ecological explanation // Proceedings of the National Academy of Sciences, 2005, V.102, 21, 74117414.

· #529

FosterK.R., RatnieksF.L.W. A new eusocial vertebrate? // Trends in Ecology & Evolution, 2005, V.20, 7, 363364.

· #530

, , , , , . : . , , , , - . McAuliffeK., WhiteheadH. Eusociality, menopause and information in matrilineal whales // Trends in Ecology & Evolution, 2005, V.20, 12, 650.

· #531

NowakM.A., TarnitaC.E., WilsonE.O. The evolution of eusociality // Nature, 2010, V.466, 7310, 10571062.

· #532

ThorneB.L., GrimaldiD.A., KrishnaK. Early Fossil History of the Termites // Termites: evolution, sociality, symbioses, ecology. Springer Netherlands, 2000. 7793.

· #533

WilsonE.O., NowakM.A. Natural selection drives the evolution of ant life cycles // Proceedings of the National Academy of Sciences, 2014, V.111, 35, 1258512590.

· #534

Wilson, Holldobler, 2005.

· #535

Wilson, Nowak, 2014. , , . , , : HechingerR.F., WoodA.C., KurisA.M. Social organization in a flatworm: trematode parasites form soldier and reproductive castes // Proceedings of the Royal Society of London, B: Biological Sciences, 2011, V.278, 1706, 656665.

· #536

BurdaH. et al. Are naked and common mole-rats eusocial and if so, why? // Behavioral Ecology and Sociobiology, 2000, V.47, 5, 293303.

· #537

, , , , . : . , , , .

· #538

.. . // . 1987. 3. . 100109.

· #539

KirschvinkJ.L. Red Earth, White Earth, Green Earth, Black Earth // Engineering and Science, 2005, V.68, 4, 1020.

· #540

. . ., , 1987.

· #541

.. , . , (, 1973) // .. . ., , 1980, 320323.

· #542

SimpsonA.G.B., SlamovitsC.H., ArchibaldJ.M. Protist diversity and eukaryote phylogeny // Handbook of the Protists. Springer, 2017, 121.

· #543

LeontyevD.V., SchnittlerM. The Phylogeny of Myxomycetes // Myxomycetes, Academic Press, 2017, 83106.

· #544

JanouskovecJ. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction // Current Biology, 2017, V.27, 23, R1270R1271.

· #545

BrownM.W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic supergroup // Genome Biology and Evolution, 2018, V.10, 2, 427433.

· #546

, , : http://www.pbs.org/lifebeyondearth/resources/intgouldpop.html

· #547

ErivesA.J. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance // Epigenetics & Chromatin, 2017, V.10, 1, 55.

· #548

RaoultD. The post-Darwinist rhizome of life // The Lancet, 2010, V.375, 9709, 104105.

<<<
>>>
----

: 2.453. /Cache: 0 / 0