Книга: От атомов к древу. Введение в современную науку о жизни
Три закона биоэнергетики
<<< Назад Формы жизни |
Вперед >>> Загадка дыхания |
Три закона биоэнергетики
В конце XX века биохимик Владимир Петрович Скулачев сформулировал — во многом на основе своих собственных открытий — серию обобщений, которые он назвал законами биоэнергетики[102]. Нелишне будет сказать, что на момент написания этих строк (февраль 2017 года) Владимир Петрович жив и активно работает — в частности, он остается деканом им же основанного факультета биоинженерии и биоинформатики МГУ; это к вопросу о том, что далеко не все классики уже умерли и существуют только в виде пыльных портретов на стенах. Само название «биоэнергетика», означающее изучение преобразований энергии в живых организмах, стало общепринятым именно благодаря Скулачеву, который посвятил этой науке полвека своей жизни. Протонные и натриевые потенциалы, связь синтеза АТФ с окислительно-восстановительными реакциями, механизмы фотосинтеза и дыхания — все это типичные предметы биоэнергетики. Как и азимовских законов роботехники, законов биоэнергетики по Скулачеву насчитывается ровно три. Давайте же их сформулируем, благо все нужные для этого понятия нам теперь уже знакомы.
Первый закон биоэнергетики: живая клетка избегает прямого использования энергии внешних ресурсов (света или химических реакций) для совершения полезной работы. Она сначала превращает их в одну из трех конвертируемых форм энергии («энергетических валют»), а именно в АТФ, ??H или ??Na, и уже эти «валюты» расходуются на разные энергоемкие процессы.
Примером такого энергоемкого процесса может послужить самая обыкновенная механическая работа. Чаще всего на нее тратится АТФ: например, именно за счет расщепления АТФ сокращаются мышцы. Между прочим, когда в 1939 году Энгельгардт и Любимова открыли АТФазную активность миозина (см. главу 10), то многие коллеги вначале не хотели им верить: ну не может же вся мышечная клетка быть набита расщепляющим АТФ ферментом! Оказалось, вполне может. Жгутик какой-нибудь эвглены (или любого другого жгутиконосца) тоже работает за счет распада АТФ.
Правда, это относится только к эукариотному жгутику, который представляет собой покрытый плазматической мембраной вырост клетки с проходящим внутри пучком микротрубочек. Бактериальный жгутик устроен совершенно иначе (см. рис. 11.5). Это тонкая жесткая трубка из белка флагеллина, изогнутое основание которой (в его состав входит еще несколько разных белков) вмонтировано в клеточную стенку бактерии таким образом, что может относительно нее свободно вращаться. Если бактерию поймать за жгутик (например, если она им за что-нибудь зацепится), она станет вращаться относительно жгутика сама. В нормальной же ситуации жгутик обеспечивает бактериям очень быстрое движение, хотя ни с какими белками, расщепляющими АТФ, он не связан. Проще говоря, на вращение бактериального жгутика АТФ не тратится. Его вращение происходит не за счет энергии АТФ, а за счет протонного потенциала ??H, который преобразуется в работу без всякого химического посредника. Механизм этого оказался относительно простым. Основание бактериального жгутика связано с клеточной мембраной, на которой поддерживается разность концентраций протонов — снаружи их гораздо больше. Когда открываются протонные каналы, протоны текут внутрь клетки и попутно действуют на специальные моторные белки таким образом, что заставляют вставленный в мембрану диск крутиться. А вместе с ним крутится и жгутик. Установлено, что на один оборот жгутика расходуется энергия примерно 1000 протонов.
Стоит добавить, что если бактерия грамотрицательная, то все рассказанное относится к ее внутренней мембране, а не к наружной (см. главу 5). Через наружную мембрану жгутик проходит насквозь (там тоже для этого есть специальные белки), но в генерации движения она не участвует.
Самое интересное, что существуют и такие бактерии, у которых жгутик работает не на протонах, а на ионах натрия. Энергия натриевого потенциала может точно так же переходить в механическую работу и вращать жгутик, механизм там очень схожий. Более того, есть морские бактерии, которые имеют сразу два типа жгутиков — с протонными «моторами» и с натриевыми, и пользуются теми или другими в зависимости от солености окружающей среды, благо жгутики можно по мере надобности собирать и разбирать. В морской воде, где снаружи много натрия, выгоднее пользоваться натриевым движителем, а вне моря можно перейти на протонный. Эта история очень наглядно показывает, что протонный и натриевый потенциалы взаимозаменяемы.
Жгутик архей по своей конструкции похож на бактериальный, хотя и показано, что он сформировался независимо на основе других белков. У общего предка бактерий и архей никакого жгутика не было. Но при этом архейный жгутик тоже вращается и тоже работает на протонном потенциале. Это означает, что механизм вращения жгутика за счет потока протонов возник в ходе эволюции по меньшей мере дважды — у бактерий и у архей.
Второй закон биоэнергетики: любая живая клетка располагает как минимум двумя основными «энергетическими валютами». Одна из них — всегда АТФ, вторая — или ??H, или ??Na.
Нередко бывает, что у одной и той же бактерии в клетке есть все три «валюты» — и АТФ, и ??H, и ??Na (с возможностью между ними переключаться). Впрочем, это зависит от среды: например, у пресноводных бактерий ??Na обычно не используется, потому что натрия в среде обитания просто маловато. Все три «валюты» есть и в животной клетке. Там они разделены в пространстве: на внешней (плазматической) мембране энергетика натриевая, а на внутриклеточных мембранах протонная. У животных натриевая энергетика очень активно используется и для транспорта веществ, и для обеспечения работы нервных клеток. У растений значение натриевой энергетики меньше, но нередко она тоже есть (а сочетание протонной энергетики и АТФ есть всегда). Живых организмов, обходящихся только одной энергетической валютой, по-видимому, просто не существует. Этих валют всегда не меньше двух. Исключение — только вирусы, у которых нет собственных энергетических систем.
Третий закон биоэнергетики: все три «энергетические валюты» могут свободно конвертироваться друг в друга. Поэтому одной из них (любой) в принципе достаточно для поддержания жизнедеятельности.
Например, при фотосинтезе за счет энергии захваченных квантов света сначала образуется протонный потенциал (??H) на специально предназначенной для этого мембране, а потом уже с помощью протонной АТФ-синтазы энергия этого потенциала трансформируется в энергию связей АТФ. То же самое происходит и при дыхании. Но есть морские бактерии, у которых в процессе дыхания генерируется не протонный потенциал (как у большинства других дышащих бактерий и у всех эукариот), а натриевый. Тут мы снова видим, насколько эти потенциалы взаимозаменяемы.
Благодаря ионным АТФ-синтазам и ??H, и ??Na могут свободно конвертироваться в энергию АТФ. И наоборот — тоже; если, например, клетке выгодно «инвестировать» энергию АТФ в протонный потенциал, она всегда может это сделать. Дело в том, что роторный механизм любой АТФ-синтазы можно раскрутить в другую сторону, и тогда она будет делать строго обратное тому, что делает «штатно»: расщеплять АТФ, перекачивая ионы против градиента концентрации. Так что с переводом энергии протонного (или натриевого) потенциала в энергию АТФ или обратно нет никаких трудностей. И наконец, ??H и ??Na могут свободно конвертироваться друг в друга вообще без всяких посредников, с помощью уже упоминавшегося натрий-протонного антипортера.
<<< Назад Формы жизни |
Вперед >>> Загадка дыхания |
- Две валюты
- АТФ и полифосфат
- АТФ и прочие молекулы
- Протоны и энергия
- Великая протонная альтернатива
- Третий резерв
- Мембраны и транспорт
- Окислительно-восстановительные реакции
- Источники углерода
- Формы жизни
- Три закона биоэнергетики
- Загадка дыхания
- От глюкозы до пирувата
- Цикл лимонной кислоты
- Дыхательная цепь
- Зубчатые колеса
- Поэма начала
- 11. Энергия
- Зубчатые колеса
- Две валюты
- Загадка дыхания
- Формы жизни
- Протоны и энергия
- Поэма начала
- Русское знамя в Новой Гвинее
- Связь соотношения полов при рождении с условиями среды.
- Татары, башкиры, чуваши, карачаево-балкарцы, крымские татары
- Суперматерик Евразия
- 10.3. Одна в джунглях среди «дьяволов»