Книга: Извечные тайны неба

Финал

<<< Назад
Вперед >>>

Финал

По мере сгорания водорода температура и давление в недрах звезды увеличиваются. В звезде начинают выделяться очень плотное гелиевое ядро и разреженная оболочка. Остатки водорода «выгорают» на границе ядра и оболочки. При этом оболочка непрерывно раздувается и температура на поверхности звезды снижается. Земной наблюдатель этой реальной физической картины, разумеется, не видит, и его информация свидетельствует о событиях как будто бы прямо противоположных. Земной наблюдатель со стороны фиксирует, что со всей огромной оболочки такая звезда в общей сложности излучает еще больше света, чем прежде. Эта звезда покидает главную последовательность диаграммы Герцшпрунга-Рессела. Она красный гигант.

Неэкономно расходуя энергию, красный гигант в короткий срок растрачивает остатки водорода. Подогрев оболочки прекращается, и в дальнейшем она рассеивается в пространстве. Небольшое ядро наблюдается теперь как очень плотная и горячая звезда – белый карлик.

Независимо от того, справедлива или не справедлива изложенная теория, можно считать установленным фактом, что «жизнь» звезды – это поединок двух противоборствующих сил. Давление горячих газов изнутри постоянно стремится увеличить размеры звезды. Напротив, гравитационные силы взаимного притяжения всех составляющих звезду частиц вещества стремятся как можно больше сжать ее.

Звезда остается в обычном «уравновешенном» состоянии, пока давление горячих газов и гравитационное сжатие взаимно компенсируются. В результате выгорания водородного «топлива» действие гравитационных сил оказывается резко преобладающим. Тогда наступает стремительное сжатие звезды.

Теория рассматривает три варианта «агонии» состарившихся звезд.

Звезды с массой меньше 1,2-1,4 массы Солнца, как описано выше, сжимаются до состояния белых карликов. Все атомы в недрах белых карликов разрушены на составляющие их элементарные частицы. Вещество белых карликов состоит из «стиснутых» атомных ядер и электронов.

Если исходная масса звезды превосходила массу Солнца более чем в 1,2-1,4 раза, то звезда сжимается гораздо сильнее: до состояния тусклой и сверхплотной нейтронной звезды. Недра подобной звезды должны состоять из нейтронов, образующихся при сверхбольших плотностях за счет слияния протонов с электронами.

Существование нейтронных звезд было давно предсказано теоретически, но обнаружить их оказалось далеко не просто.


Жизненный путь звезд глазами художника (масса звезд указана в долях массы Солнца).

И. С. Шкловский образно называл нейтронные звезды неуловимой «синей птицей» астрофизиков-теоретиков, о которой они мечтали на протяжении трех десятилетий.

Открытие нейтронных звезд, как водится, было сделано совершенно случайно. В августе 1967 г. Жаклин Белл – аспирантка известного английского радиоастронома Энтони Хьюиша – в старинном университетском городке Кембридже во время рядовых наблюдений мерцания радиоисточников обнаружила поступающие из одной точки неба очень короткие и очень правильные радиоимпульсы, напоминающие быстро чередующиеся точки азбуки Морзе.

«Это казалось нелепым, – вспоминал позднее Э. Хьюиш. – Столь регулярные импульсы просто не могли приходить из „звездного пространства“».

Полгода – беспрецедентный случай в современной астрономии! – открытие держалось в строжайшей тайне, а неведомый радиоисточник среди персонала обсерватории получил сокращенное обозначение LGM. Оно происходило от начальных букв английских слов little green men – «маленькие зеленые человечки», как в шутку порой называют на Западе выдуманных обитателей других миров. Только когда дальнейшие исследования полностью исключили возможность искусственного происхождения регистрируемых в Кембридже сигналов, новость была предана огласке. Это произошло в начале 1968 г.

При последующих поисках за короткий срок было обнаружено несколько десятков загадочных источников правильных радиоимпульсов. Интервалы между импульсами этих источников были различными – от одного всплеска каждые 4 с до быстрых мерцаний, чередующихся через несколько сотых долей секунды. За вновь открытыми объектами Вселенной укрепилось название пульсирующих радиоисточников, или сокращенно пульсаров.

Скрупулезные теоретические выкладки показали, что всплески радиоизлучения пульсаров, отличающиеся исключительно высокой равномерностью, обязаны своим происхождением их вращению. Пульсары окружены магнитными полями, напряженность которых в миллионы раз превосходит напряженность самых мощных магнитных полей, когда-либо созданных в условиях Земли. Собственные магнитные поля как бы фокусируют радиоизлучение пульсаров в узкие пучки, и они становятся похожими на вращающиеся космические радиомаяки. Когда луч такого маяка-пульсара поворачивается к Земле, мы наблюдаем очередной всплеск его радиоизлучения.

Один из пульсаров оказался расположенным в центре старой знакомой – Крабовидной туманности. Частота его пульсаций достигает 30 импульсов в секунду. Очевидно, что вращаться вокруг своей оси со скоростью 30 об/с, как это делает пульсар Крабовидной туманности, и не разлететься при этом на куски под действием сил инерции может только очень малое по своим размерам тело. Различные оценки привели к одним и тем же результатам: размеры пульсаров очень скромны, гораздо меньше размеров даже небольших планет вроде Земли – порядка 10 км.

В итоге мало-помалу были собраны исчерпывающие доказательства того, что пульсары действительно представляют собой теоретически предсказанные тремя десятилетиями ранее нейтронные звезды – звезды, находящиеся в последней стадии своей эволюции.

По современным представлениям, нейтронная звезда покрыта твердой, жесткой кристаллической корой с толщиной порядка одного километра. Так велика сила тяготения на этой звезде, что самая крупная гора на ее поверхности не смогла бы подняться выше 2,5 см. Под корой в недрах звезды находится сверхтекучая «нейтронная жидкость». Чудовищные условия нейтронной звезды приводят к тому, что все пустоты в атомах «выжимаются»: нейтронная звезда становится как бы одним цельным атомным ядром фантастических размеров. Плотность нейтронных звезд, как мы уже рассказывали, неслыханно велика: она заключается в пределах от 1012 до 1015 г/см3. Общая энергия излучения такого пульсара, как например, пульсар Крабовидной туманности, в тысячи раз превосходит энергию, излучаемую Солнцем.

Продолжительные наблюдения позволили обнаружить, что вращение некоторых пульсаров едва заметно замедляется. Это легко объяснимо: кинетическая энергия вращения нейтронной звезды переходит в излучение, и пульсар постепенно «замирает».

Помимо общего незначительного замедления вращения, у отдельных пульсаров наблюдаются непредвиденные скачкообразные увеличения скорости вращения. Они находятся на пределе чувствительности современной аппаратуры, составляя не более десятимиллионной доли секунды между соседними импульсами. Эти скачки в скорости вращения пульсаров связывают с перестройкой структуры их коры, можно сказать, со своего рода «звездотрясениями».

К середине 80-х годов радиоастрономы занесли в каталоги свыше четырехсот состарившихся звезд – пульсаров.

Третий теоретически возможный вариант звездной «кончины» представляет собой гравитационное сжатие звезд с массой больше двух масс Солнца. В соответствии с выводами теории относительности, вокруг них в результате гравитационного сжатия возникает настолько сильное искривление пространства, что электромагнитное излучение вообще не в силах вырваться за пределы этого объекта. Звезды, претерпевающие такое сжатие, становятся «невидимками».

Некоторые физики склонны образно называть возникающее при этом явление «черной дырой» в пространстве. Благодаря своему чудовищному гравитационному полю «черная дыра» не только ничего не излучает, но даже захватывает и поглощает всякое проходящее мимо излучение. Физические проблемы, связанные с последующей судьбой таких звезд, являются одними из наиболее интригующих в современной астрофизике.

Вернемся вновь к диаграмме Герцшпрунга-Рессела и попробуем в рамках изложенной теории наглядно представить себе все этапы эволюции звезды.


Температура поверхности звёзд. Эволюционный трек звезды на диаграмме Герцшпрунга–Рессела.

На рисунке с диаграммой Герцшпрунга-Рессела сплошной линией («лентой») со стрелками показаны перемещения звезды по мере ее «возмужания», или как говорят астрономы, ее эволюционный трек. Этот эволюционный трек начинается в правом нижнем углу диаграммы, когда только-только формирующаяся звезда еще холодна и светит слабо. Вскоре – за несколько десятков миллионов лет – звезда разогреется и достигнет главной последовательности. Затем на протяжении нескольких миллиардов лет она медленно поднимается вдоль главной последовательности снизу вверх, становясь все более яркой и горячей. Однако в какой-то момент времени, несмотря на продолжающееся увеличение общей светимости, температура поверхности звезды уже не увеличивается, а убывает. Характеристики звезды на диаграмме Герцшпрунга-Рессела начинают изменяться в сторону звезд-гигантов.

Проходит еще немного времени, и звезда красный гигант достигает поворотной точки своего существования: она начинает сбрасывать разреженную оболочку. Итог: светимость звезды резко падает, а температура поверхности быстро нарастает. Эволюционный трек звезды поворачивает на 180°. Дальнейшие события происходят достаточно быстро: звезда уходит из области красных гигантов, пересекает под прямым углом главную последовательность, спускается в область белых карликов и отправляется на «кладбище звезд».

Самой длительной фазой существования звезды является та фаза, когда она впервые выходит на главную последовательность. В зависимости от начальной массы звезда может выйти на главную последовательность немного ниже или немного выше. Соответственно в процессе дальнейшей эволюции, она может попасть в область красных гигантов или сверхгигантов, а в конце жизни, как мы рассказывали, оказаться в числе белых карликов, нейтронных звезд или «черных дыр».

Вот к каким далеко идущим выводам может привести кропотливый теоретический анализ такой, на первый взгляд, невзрачной схемы, как диаграмма Герцшпрунга-Рессела.

Длительный практический опыт людей убеждает в том, что любая форма энергии обязательно переходит в конечном счете в теплоту. А теплота имеет примечательную особенность безвозвратно рассеиваться в окружающем пространстве. В результате обобщения такого опыта появился в науке принцип, носящий название второго закона термодинамики. Наиболее простая формулировка его такова: в замкнутой, изолированной системе теплота не может сама собой переходить от более холодного тела к более горячему.

Автор второго закона термодинамики немецкий физик Клаузиус вывел из него пессимистические следствия. Клаузиус считал, что Вселенную в соответствии с этим законом ждет неминуемая «тепловая смерть». Будущая картина Вселенной рисовалась ему в виде несметного скопища «трупов» остывших звезд.

Однако идею «тепловой смерти» Вселенной современная наука отвергла. Действительно, может наступить и наступает «тепловая смерть» отдельных звезд и звездных систем. Но второй закон термодинамики неприменим ко всей Вселенной в целом.

Рассмотрим пример. Температура в грозовом разряде достигает гигантских значений, хотя температура окружающей атмосферы и грозовых туч вряд ли превышает +25 °C. Что это? Концентрация энергии и нарушение второго закона термодинамики? Нет. Просто-напросто закон относится лишь к изолированным системам. А тучи запасли энергию из внешних источников, они запасли энергию ветра и солнечных лучей. При столкновении туч запасенная ими энергия перешла в энергию электрического разряда.

Приведенный пример помогает понять несостоятельность концепции «тепловой смерти» безграничной Вселенной. По отношению к любой ограниченной части Вселенной – будь то даже целая галактика или система галактик – всегда существуют другие, внешние области. И благодаря существованию внешних источников во Вселенной может происходить очень многообразное перераспределение энергии.

<<< Назад
Вперед >>>

Генерация: 0.454. Запросов К БД/Cache: 3 / 1
Вверх Вниз