Книга: Чем мир держится?

Слава маятнику

<<< Назад
Вперед >>>

Слава маятнику

Слабость и даже, можно сказать, беспомощность самой могучей из сил нашей Вселенной легко доказываются опытом, который каждый из нас, не задумываясь особенно над выводами, успел проделать еще в раннем детстве. Крошечный магнит, извлеченный из электродвигателя игрушечного автомобильчика, поднимает целую цепочку канцелярских скрепок, небольшой гвоздь, пол-дюжины бритвенных лезвий. Поднимает — значит, одерживает победу над притяжением целой огромной планеты! Вот ведь как!

Тем поразительнее, что мы научились различать чрезвычайно мелкие колебания этой самой слабой и самой могучей силы. Причем с помощью удивительно простых приборов. Первым из них по праву должен быть назван маятник. Что на самом деле проще его?

Но нужны были гений и наблюдательность девятнадцатилетнего Галилея, чтобы заметить, что люстра в Пизанском соборе по мере уменьшения размаха своих колебаний вовсе не тратит на каждое из них все меньше и меньше времени. Именно с этого наблюдения началась не только история маятника как точного прибора, но история подлинно научного исследования гравитации. Должно было пройти еще семь лет, прежде чем Галилей проделал свои знаменитые опыты по сбрасыванию разных предметов с Пизанской башни. И с самого начала видел он глубокую связь между законами, управляющими падением тел, и законом, управляющим качаниями маятника.

Маятник стал прибором, с помощью которого установили ускорение свободного падения. Именно маятник относительно точно — куда точнее, чем геометрические измерения меридианных дуг, — показал, насколько именно Земля сплюснута у полюсов (кстати, в Лапландии экспедиция Мопертюи немало поработала и с маятниками). Свойства маятника так тесно связаны с силой тяжести, с земным тяготением, что известный немецкий физик Макс Лауэ как-то заметил: «Маятниковые часы — это не просто ящик, который вы покупаете в магазине; маятниковые часы — это тот ящик, который вы купили в магазине вместе с самой Землей. Если вы хотите передать маятниковые часы от одного наблюдателя к другому, вы должны выдать каждому из них по Земле; конечно, это довольно накладное мероприятие».

Период колебания маятника зависит от его длины и силы тяжести. И — в принципе — только от них. Выходит, зная длину маятника (а ее можно измерить, хотя тут возникают сложности, которых здесь не стоит касаться) и период колебаний (тоже поддающийся измерению), можно определить силу тяжести в любой данной точке. При этом очень важно, что вместо того, чтобы ловить доли секунды в поисках точного промежутка времени, отданного на одно колебание, можно определить, скажем, время, за которое маятник делает тысячу, десять, сто тысяч колебаний, и разделить это время на их число — так сразу многократно повышается точность наших знаний.

Вот такие маятники и стали главными приборами на первых гравиметрических станциях, покрывших нашу планету довольно густой сетью уже с конца XIX века.

Впрочем, наиболее точно и бесспорно ускорение земного тяготения определяется самым прямым образом: наблюдением за тем, как падает пробное тело в вакууме.

Определить при помощи маятника абсолютную силу тяжести чрезвычайно трудно, ведь тут многое зависит от точного измерения его длины. Поэтому в наше время маятники предпочитают использовать для выяснения разницы между силой тяжести в двух точках. В этих двух точках один и тот же маятник будет иметь разный период колебаний, и такая разница будет зависеть от различий в силе тяжести. Надо было только выбрать на Земле место, где силу тяжести следовало принять за эталон. Поскольку впервые абсолютное значение силы тяжести на Земле было установлено в городе Потсдаме (ныне — в ГДР) в 1898–1904 годах, то именно Потсдам стал опорным пунктом для мировой гравиметрической системы.

Нынешние наземные гравиметрические измерения, по сути, относительны, они показывают прирост или падение силы тяжести в какой-то точке Земли сравнительно с исходным пунктом. (Надо оговориться: поскольку Земля вращается, то на каждое тело на ее поверхности действует, кроме силы земного притяжения, еще и центробежная сила; сила тяжести есть равнодействующая этих двух сил.)

В наших наручных часах место гири и маятника ходиков заняла пружина. В истории гравиметрии лет пятьдесят назад наступил момент, когда маятник в качестве универсального и единственного прибора для определения силы тяжести оказался потеснен гравиметром с пружиной. На конце пружины подвешен груз — вот суть прибора. Груз растягивает пружину, а уж на сколько именно — зависит от силы тяжести в данном месте. Пружина, конечно, нужна идеальная, длина ее и способность растягиваться должны как можно меньше зависеть от внешних условий, ведь измерять тут приходится миллионные доли длины пружины. Впрочем, само слово «пружина» носит здесь чрезвычайно обобщающий характер. В этом качестве используют и настоящие металлические и кварцевые пружины и упругие нити и даже сжатый газ.

Сейчас появились гравиметры, в которых используются магнитная подвеска, сверхпроводимость и другое оружие из современного арсенала физики.

Идея применения в приборе газа, как и сама идея гравиметра такого типа, принадлежит Ломоносову.

Подводит гравиметр только то, что как ни точно выверен этот прибор, а нагруженная пружина имеет свойство растягиваться.

Гравиметры, как и нынешние маятниковые приборы, измеряют относительную силу тяжести. Но при этом гравиметр в конце очередной серии измерений приходится возвращать в исходный пункт (создана целая сеть таких пунктов), по которому он выверен, и смотреть, не изменились ли показания прибора, а если изменились, то как.

Очень напоминают маятник по характеру колебаний и крутильные весы (их часто так и называют крутильным маятником), те самые, на которых взвесили и саму Землю. Роль первого весовщика, как мы знаем, сыграл Генри Кэвендиш.

Крутильные весы отличаются прямо-таки фантастической чувствительностью. Н. П. и А. Н. Грушинские отмечают: «Замечательным является тот факт, что Кэвендиш при низких технических возможностях 18 века получил результат, лишь на 1 % отличающийся от современного».

Крутильные весы Кэвендиша стали прародителем приборов, измеряющих уже не само гравитационное поле Земли в разных точках нашей планеты, а именно изменение поля при переходе от одной точки к другой. Называют такие приборы вариометрами. Первый вариометр создал венгерский физик Этвеш (тот самый, что первым с высокой точностью измерил на крутильных весах эквивалентность тяжелой и инертной масс).

Перед нами опять-таки коромысло с двумя грузами на концах, причем если на один груз действует не совсем та сила, что на другой, оно повернется вокруг оси подвеса. Насколько повернется — уже можно измерить. Хороший вариометр реагирует даже на наблюдателя, стоящего около него, то есть регистрирует неоднородность поля, возникшую от присутствия человека. Если снова вспомнить о слабости гравитации, о том, как невелика сила тяготения, создаваемая массой в шестьдесят — сто килограммов, остается только поразиться такому результату. А между тем речь ведь идет просто о «хорошем вариометре», а не о неком уникальном и сверхточном.

Этвеш же первым и применил вариометр для того, что можно назвать геологической разведкой. Впрочем, он не искал полезные ископаемые, а пытался исследовать геологические структуры.

Сегодня гравиметрическую разведку геологи используют вместе с другими физическими методами поиска. Уголь и нефть, железная, хромовая, медная руды выдают себя точным гравиметрам и вариометрам. Глубину льда в Антарктиде и Гренландии определяли гравиметрическим методом — ведь легкий лед лежит на гораздо более плотных материковых породах.

Н. П. и А. Н. Грушинские обращают особое внимание на то, что гравиметрия идет впереди других видов геологической разведки на море, как и на суше. Правда, уточнение результатов приходится часто проводить другими методами, но ведь нельзя же требовать, чтобы тот, кто идет впереди, сам же и расширял проложенную им тропу.

Наконец, в роли гравиметра выступают искусственные спутники Земли. На их траектории отражается распределение масс в теле Земли. До сих пор спутники давали в основном сведения широкого характера, с их помощью уточняли фигуру Земли, находили занимающие относительно большие территории аномалии силы тяжести. Той особой «конкретности», какую дают наземные гравиметры, спутники обеспечить не могли. На их движении сказывается слишком много привходящих обстоятельств. Но сейчас, когда уже летали первые спутники, защищенные от таких искажений, когда готовятся к запуску десятки новых свободных от сноса спутников, положение коренным образом меняется. Издали и в мелких деталях гравитационного поля Земли можно будет разобраться лучше, чем вблизи.

А что же маятник? Он еще послужит. И, строго говоря, искусственный спутник Земли — тоже ведь в определенном смысле маятник. Равномерное круговое движение спутника и колебания маятника описываются одними и теми же уравнениями. Логическое сближение маятника и спутника — отнюдь не просто сравнение, аналогия. Сходство здесь весьма глубокое: и космический гравиметр, и. маятниковый наземный гравиметр работают по одному принципу.

<<< Назад
Вперед >>>

Генерация: 6.214. Запросов К БД/Cache: 3 / 1
Вверх Вниз