Книга: Чем мир держится?
Единство физики, единство материи
<<< Назад Встреча у черной дыры |
Вперед >>> Гравитационная постоянная |
Единство физики, единство материи
Эйнштейн в свое время был очень разочарован, когда его десятилетние труды по разработке того, что он называл общим принципом относительности, дали «всего-навсего» теорию гравитации. Он ждал от своей работы много большего.
Это здорово, когда человек так требователен к себе, что собственное достижение столь грандиозного масштаба кажется ему не таким уж крупным. С другой стороны, именно это разочарование, именно желание попять мир в еще более высокой степени заставило ученого погрузиться с головой в разработку единой теории поля. Сегодня такой теории нет, во всяком случае признанной.
Но зато сама общая теория относительности, оставаясь учением о гравитации, стала чем-то гораздо более широким. И не потому даже, что ее развитие Эйнштейном и после Эйнштейна привело к интереснейшим результатам, имеющим значение для других областей физики. А потому еще, что эти другие области отнюдь не стояли на месте. Они развивались параллельно теории относительности, а уж «научное-то пространство» никогда, даже во времена самого Евклида, не было «евклидовым». В науке параллельные линии развития имеют свойство пересекаться, даже когда речь идет о разных науках, а тут ведь перед нами разные линии движения вперед внутри одной физики.
Было бы, наверное, любопытно, хоть шутки ради, и вправду подойти к физике с этой точки зрения — как к искривленному пространству, вычислить «радиус кривизны», благодаря которой различные направления встречаются, обогащая друг друга, как встречались два «плоскостных» физика, двигавшихся по глобусу из разных точек экватора по разным меридианам. И тут тоже уместно назвать сблизившую их силу тяготением. Причина такого тяготения в данном случае понятна. В ее основе лежит единство мира. Одну и ту же материю, одно и то же пространство исследуют, если отвлечься от масштабов, все физики, чем бы конкретно они ни занимались. Математика, как отметил еще Галилей, это язык природы. И если вся она говорит на одном и том же языке (в отличие от человечества, между прочим), то ведь так ее куда легче понять.
Законы электромагнетизма открывали, беря за образец закон всемирного тяготения Ньютона. Кулон перенес закон «обратных квадратов» на взаимодействие электрических зарядов и оказался прав. Постепенно возникла стройная теория электромагнитного взаимодействия, вершиной и завершением которой стали знаменитые уравнения Максвелла. Эта теория появилась намного раньше новой теории гравитации, немалую роль тут сыграла огромная — сравнительно с гравитационным взаимодействием — величина электромагнитных сил.
Кроме того, электромагнитные силы не имеют того универсального характера, что силы гравитации. Теории тяготения предстояло быть несравненно более широкой.
И чем дальше углубляются физики разных областей в изучение своих объектов, тем очевиднее становится, что у них много общего и кроме языка.
Не раз и не два уже случалось, что достижения ученых-теоретиков, занимающихся плазмой, светом, радиоволнами и даже жидкостями, оказывались использованными в развитии представлений о том, что происходит в поле тяготения. И наоборот, гравитационный теоретический аппарат, созданный Эйнштейном, его товарищами по работе и продолжателями, оказался весьма полезен в других районах и точках физики. «Гравитационщики», имеющие дело с самой слабой и одновременно самой могучей силой Вселенной, создали не только изощренные методы расчетов и мысленных экспериментов для космологии и астрономии, но и самую, пожалуй' точную сегодня технику земного эксперимента.
Однако все конкретные примеры выглядят до некоторой степени частными на фоне общей встречи двух самых мощных достижений физики XX века — теории гравитации и квантовой механики.
Физики-экспериментаторы и теоретики ждут чрезвычайно многого от мало-помалу создающейся, хотя далеко еще не сформировавшейся квантовой теории гравитации. Уже в самом ее названии отражен синтез обеих ведущих областей физики.
Теория гравитации имеет дело с огромными массами и расстояниями, измеряемыми световыми годами; квантовая механика заведомо занимается эффектами, возникающими на самом нижнем этаже материи — в микромире. У них, однако, нашлись и точки пересечения, которые в принципе можно было предвидеть еще двадцать лет назад, и, что еще важнее, общие сферы деятельности.
Мы много говорили об эволюции звезд. При этом не могли не обратить внимания на следующий факт: чем больше масса звезды, чем сильнее ее тяготение, тем очевиднее ее неустойчивость как системы. Но эта неустойчивость, подчеркивает видный советский физик доктор физико-математических наук Я. А. Смородинский, предсказывается на основе теории элементарных частиц, формул квантовой механики.
Открытие пульсаров с такой точки зрения было подтверждением того, что формулы квантовой механики применимы и к звездам. О свойствах гигантских тел мы узнаем на основе изучения тел сверхмалых.
В физике элементарных частиц выделяют две фундаментальные постоянные — скорость света и постоянную Планка. Постоянную Планка иначе называют квантом действия. Она характеризует наименьшие возможные порции, на которые может уменьшаться или увеличиваться любая энергия и равна примерно 6,62610-27 эрга на секунду. Скорость света отличается от всех прочих скоростей тем, что она — одна-единственная — одинакова для всех наблюдателей во всех возможных системах отсчета. Квант действия тоже один для любых физических систем. Как полагают ученые, если бы удалось найти для физики элементарных частиц еще одну — третью — столь же фундаментальную постоянную, то из этих трех величин можно было построить все остальные величины этого раздела физики. Так, через три точки можно провести одну и только одну окружность. Две точки, как и две фундаментальные постоянные, оставляют слишком большую свободу выбора.
В общей теории относительности положение сходное: тоже есть две универсальные постоянные — одна из них та же скорость света, другая — гравитационная константа. Опять-таки одной «точки опоры» не хватает. Обеим теориям недостает того, что можно назвать масштабной единицей: для массы, либо для расстояния, либо для времени. Найдись «естественный» масштаб для любой из этих трех величин, он мог бы быть использован, после преобразований, и для двух других.
Не раз физики пытались вводить масштабные единицы в свою теорию. Еще в 1938 году знаменитый немецкий физик Вернер Гейзенберг, один из отцов квантовой механики, предложил считать квантом пространства, наименьшей возможной длиной, размер электрона десять в минус тринадцатой степени сантиметра! Предложение выглядело естественным. Мы ведь не знаем, например, заряда, меньшего, чем заряд электрона, да и частицы не должны обладать способностью умещаться на отрезке, меньшем, чем электрон. Но затем выяснилось, что в микромире возможны и меньшие длины. (Сейчас на ускорителях удается исследовать строение нуклонов — частиц атомного ядра — до длин примерно в десять в минус пятнадцатой степени сантиметра. И это далеко нс предел.) Между тем естественных, данных нам природой тел, чьи размеры могли бы стать эталонными, не удается встретить и при таком углублении в элементарную частицу.
Аналогично этому пытались найти среди космических тел такое, массу которого можно было бы принять за эталон, — тоже не получилось.
Итак, ни общая теория относительности, ни квантовая механика по отдельности не смогли найти эталона длины, массы или времени. А вместе они, похоже, такой универсальный размер дают.
Его назвали длиной Планка, равна она десяти в минус тридцать третьей степени сантиметра; меньшие, чем длина Планка, отрезки, как полагают многие ученые, невозможны.
Перед нами — квант пространства. Казалось бы, величина из микромира, где гравитация слишком мала, чтобы себя проявлять. Тем не менее в формулу, по которой вычислили этот квант пространства, входят и гравитационная постоянная, и постоянная Планка, и скорость света.
Тут, видимо, пришло время напомнить, что на поразительное единство и взаимосвязанность законов природы, действующих в разных ее областях, обращали внимание многие мыслители. Максвелла поражало сходство уравнений, описывающих электромагнитные колебания и колебания обыкновенного маятника.
Владимир Ильич Ленин видел проявление единства природы в том, что дифференциальные уравнения, относящиеся к различным областям явлений, поразительно аналогичны.
То обстоятельство, что крайности сходятся, что звезды исследуют порой, образно говоря, в камере Вильсона, а на электроны наводят телескоп, что, исследуя атомное ядро, мы можем кое-что узнать не только о частицах, которые там есть, но и о тех, которых там нет, — все это имеет, безусловно, глубокий философский смысл. Картина мира — мозаика, в которую каждый раздел науки дал свои кусочки смальты. Но свойства любого кусочка зависят от свойств остальных и в чем-то, в свою очередь, определяют их свойства.
<<< Назад Встреча у черной дыры |
Вперед >>> Гравитационная постоянная |
- Законы должны быть одинаковы всюду
- Институт приключенческой математики
- Сколько сантиметров в секунде?
- Всякий великий человек
- Проверка в бою
- Во вселенной
- Встреча у черной дыры
- Единство физики, единство материи
- Гравитационная постоянная
- На старой Земле и рядом
- Фигура леди Земли
- Слава маятнику
- На весах жизни
- Без тяжести
- Загадка тяготения — загадка?
- Единство психического и соматического
- Единство нервной и гуморальной регуляции
- 3. Уровни организации живой материи. Методы биологии
- Единство вод Земли
- Единство жизни
- 1.3. Уровни организации живой материи. Методы биологии
- Первичность пространства, материи и времени.
- Физические поля как один из видов материи.
- Темные пятна в темной материи
- 2. Сущность жизни и свойства живого