Книга: Чем мир держится?

Гравитационная постоянная

<<< Назад
Вперед >>>

Гравитационная постоянная

Она появилась на свет из-под пера Исаака Ньютона, как Афина-Паллада в древнем мифе из головы Зевса. Мало было великому Ньютону понять, что тяготение прямо пропорционально массе тел и обратно пропорционально квадрату расстояния между ними. Надо было еще ввести коэффициент пропорциональности, Этот коэффициент и стал в дальнейшем именоваться гравитационной постоянной, заняв почетнейшее — первое уже по старшинству — место среди физических постоянных, или констант.

Менялись только латинские буквы, обозначающие этот коэффициент. Одно время его представляла в формулах строчная f, теперь чаще всего эту роль берет на себя заглавное G. Над самой гравитационной постоянной не властна среда, разделяющая массы, она не зависит от химических и любых иных свойств этих масс. Холодные планеты и самые горячие из звезд не в силах изменить коэффициент в формуле Исаака Ньютона. Он остается тем же в уравнениях и для двух протонов и для двойной звезды. Это воистину постоянная. Большинство, пожалуй, даже огромное большинство ученых полагают, что над гравитационной константой не властно даже время.

Поль Дирак, автор множества смелых идей, человек, предсказавший, в частности, существование позитрона — «положительного электрона», поставил под сомнение неизменность гравитационной постоянной во времени. Если он прав, то получается, что хотя в истории Вселенной тяготение всегда определялось, как и сегодня, массой тяготеющих тел и расстоянием между ними, сила тяготения изменялась. Точнее, уменьшалась.

Размеры такого уменьшения были предположительно определены: на три стомиллиардные доли за триста шестьдесят пять дней.

Неисчислимы проистекающие из такого взгляда последствия для наших представлений об эволюции всего нашего мира и, в частности, маленькой планеты Земля.

Физик Иордан сделал из гипотезы Дирака о постоянном ослаблении гравитационной постоянной определенный вывод, что в результате этого процесса Земля должна расширяться, как шарик, который надувают воздухом.

Между тем некоторые геологи совершенно независимо от физиков пришли к тому же выводу о расширении Земли на протяжении всей ее истории. (А другие, напротив, категорически отстаивают неизменность размеров планеты или даже говорят об ее сжатии; есть и предположение, что Земля то расширяется, то сжимается — пульсирует.)

Уменьшение гравитационной постоянной «по Дираку» за год примерно на три стомиллиардные доли ее теперешней величины должно иметь в числе своих следствий удаление Луны от Земли каждый год примерно на два сантиметра с соответствующими изменениями ее орбиты. Обработка данных лунных затмений за девятнадцать лет как будто подтвердила сам факт удаления Луны, но связан ли он именно с уменьшением гравитационной постоянной? С нашей соседкой и спутницей у ученых вообще относительно много хлопот, и такой эффект может объясняться, конечно, и иначе.

По расчетам одного американского физика получается, что если бы гравитационная постоянная по мере углубления в прошлое росла, то всего один миллиард лет назад температура на поверхности нашей планеты должна была превышать сто градусов по Цельсию. Чем больше притяжение, тем больше должно было быть давление в центре Солнца. Выше давление — выше температура ядерных реакций — ярче Солнце — жарче на Земле. Ясно, что при такой температуре жизнь невозможна. Между тем у нас есть веские доказательства того, что миллиард лет назад жизнь на Земле процветала.

Но не будем торопиться. Тем более, что в своем широком космическом, даже космологическом варианте, в виде самой гипотезы Дирака, это предположение все-таки не теряет своей популярности.

…Величайшая катастрофа для физики — если бы мы могли разрешить все главные нерешенные проблемы, но я не опасаюсь, что это может произойти в сколько-нибудь обозримом будущем.

Фримен Дайсон

Ученые снова обращают внимание на сходство между характеризующими Метагалактику величинами. Время при космологических расчетах можно исчислить в так называемых атомных единицах. За атомную единицу принимается время, за которое свет проходит расстояние, равное «классическому радиусу электрона».

Атомная единица времени равна примерно десяти в минус двадцать третьей степени секунды — одной стосекстилльонной доле секунды. Наша Метагалактика существует на протяжении примерно десяти в сороковой степени таких единиц.

Итак, перед нами десятка в сороковой степени. Отношение электромагнитных сил в атоме к гравитационным, если усреднить данные по электронам и нуклонам (об этом говорилось во введении к книге), составляет примерно десять в сороковой степени. По мнению ряда специалистов, эти величины слишком близки друг к другу, чтобы сходство могло оказаться случайным. Ослабление притяжения — прямое следствие возраста нашего мира. Старость — не радость…

Но ведь изменение гравитационной постоянной должно было сказываться не только на размерах Земли, ион на ее орбите вокруг Солнца, как и на орбитах всех других планет.

А что должно было происходить, скажем, с двойными звездами в прошлом, когда взаимное притяжение в этих системах было намного больше, чем сегодня?

Сама эволюция звезд, как достоверно известно, зависит от их массы; примем можно сказать, что не столько от массы, сколько от произведения массы на гравитационную константу. Представление о вековом уменьшении гравитационной постоянной должно бы заставить астрономов-теоретиков пересмотреть такое количество устоявшихся теорий, что это вызвало бы, пожалуй, настоящий кризис их науки. Даже нынешние взгляды на историю и ход синтеза элементов во Вселенной подлежали бы пересмотру. Как и то, что мы считаем известным относительно множества деталей, касающихся, например, эволюции планетных атмосфер.

Вот простой пример. Сейчас, пожалуй, даже школьники младших классов знают, что такое вторая космическая скорость — наименьшая скорость, которую надо придать телу, находящемуся у поверхности космического тела, чтобы оно без воздействия каких-либо дополнительных сил покинуло это космическое тело навсегда. Для Земли вторая космическая скорость — одиннадцать и две десятых километра в секунду, для Луны — всего два и четыре десятых километра в секунду, для Юпитеpa — шестьдесят один, для белых карликов — четыре тысячи километров в секунду. И это еще не предел. На поверхности нейтронных звезд она равна уже половине скорости света! Вот как трудно вырваться из их объятий. Что уж говорить о черных дырах, где и скорости света для этого мало.

Однако на планетах некоторые молекулы и атомы газов, составляющих атмосферу, в своем беспорядочном тепловом движении достигают второй космической скорости — в применении к ним ее называют еще скоростью ускользания.

В нижних, относительно плотных слоях атмосфер такие молекулы-рекордсменки сталкиваются с другими молекулами, и эти столкновения то и дело меняют и скорость и направление их движения. «Завистливые соседки» не дают своим разогнавшимся товаркам вырваться из пут притяжения. Но в верхних разреженных слоях атмосферы дело обстоит иначе. Скоростные молекулы некому остановить, и они навсегда ускользают в космическое пространство, пополняя мировые запасы межзвездного газа.

При этом поскольку, во-первых, в верхних частях атмосфер относительно велика доля легких газов и поскольку, во-вторых, легкие молекулы чаще достигают второй космической скорости, то в первую очередь из атмосфер исчезают легкие газы — водород и гелий.

В земной атмосфере есть и водород, и гелий, но только потому, что их запасы постоянно пополняются (водородом из молекул воды, распавшихся под воздействием ультрафиолетового и рентгеновского излучения Солнца). Ведь время полного исчезновения из нашей атмосферы всего входящего в данный момент в ее состав водорода составляет всего несколько лет.

Другое дело — гигант Юпитер, его водороду куда труднее разогнаться до юпитерианской скорости ускользания, она ведь в пять с лишним раз больше земной. На Юпитере много и водорода и гелия.

А вот Луна, где сила тяжести в шесть раз, а скорость ускользания почти в пять раз меньше земной, давно потеряла свою атмосферу целиком. Меркурий и Марс имеют силу притяжения примерно втрое меньшую, чем Земля, и их атмосфера чрезвычайно разрежена.

На основе этих фактов можно представить себе, насколько иначе должна выглядеть история планет, если в прошлом гравитационная постоянная была много больше.

В формулу, по которой определяется скорость ускользания, входит корень квадратный из удвоенного произведения гравитационной постоянной на массу планеты, деленный на радиус планеты. Значит, скорость ускользания тем больше, чем больше эта постоянная и чем меньше радиус. Однако радиус-то планеты, в свою очередь, тем меньше, чем больше постоянная G. Значит, в прошлом атмосферным молекулам (по Дираку!) было гораздо труднее покидать относительно малые планеты. Выходит, Дирак своей гипотезой льет воду на мельницу предложений о существовании, по крайней мере в далеком прошлом, цивилизаций на Марсе и даже Луне.

Однако факты, которыми располагают астрофизики (именно факты, оставим сейчас в стороне выводимые из этих фактов теории), не требуют такой коренной ломки. Астрофизики в своем большинстве не чувствуют потребности в столь крутой ломке созданной ими картины мира. То же относится к большинству геологов.

Но есть ученые, верные идее Дирака. И тут нам остается только вспомнить грустные слова английского астрофизика Ф. Хойла: «Тому, кто не работает активно в какой-либо области науки, трудно себе представить, как много можно сказать в пользу любой из множества противоречащих друг другу теорий».

Так или иначе, сейчас земная экспериментальная техника вышла к рубежу, на котором гипотеза Дирака может быть проверена и, значит, должна быть проверена.

Это — одна из задач, которые будут разрешаться с помощью аппаратуры на спутниках, свободных от сноса, и «солнечном зонде».

<<< Назад
Вперед >>>

Генерация: 0.341. Запросов К БД/Cache: 0 / 3
Вверх Вниз