Книга: Микрокосм. E. coli и новая наука о жизни

Единство жизни

<<< Назад
Вперед >>>

Единство жизни

Первоначально Эшерих назвал свою бактерию Bacterium coli communis — бактерия толстой кишки обыкновенная. В 1918 г., через семь лет после смерти Эшериха, ученые переименовали бактерию в его честь: Escherichia coli. К моменту получения нового имени бактерия Эшериха успела начать новую жизнь. Уже тогда микробиологи стали миллиардами выращивать ее в своих лабораториях.

В начале XX в. ученые пытались «разобрать» живые клетки на части, чтобы понять, из чего они сделаны и как превращают сырье в живую материю. Одни ученые исследовали клетки мышечной ткани коровы, другие — сперму лосося. Многие работали с бактериями, в том числе и с E. coli. Во всех исследованных живых организмах они обнаруживали один и тот же базовый набор молекул. Основное внимание ученые сосредоточили на белках. Оказалось, что некоторые белки придают живому форму и структуру — это коллаген в коже или кератин в конских копытах. Другие белки, получившие название ферментов, побуждают определенные молекулы вступать в химические реакции. Одни ферменты отщепляют атомы от молекул, другие, наоборот, связывают молекулы друг с другом.

Существует безумное количество разнообразных белков, но их объединяет одно общее фундаментальное свойство. Все белки, где бы они ни образовались — в организме человека или в бактериальной клетке, — построены из одних и тех же «деталей» — 20 небольших молекул, именуемых аминокислотами. И работают белки в бактериях примерно так же, как и в человеческом организме. Ученые с удивлением обнаружили, что одни и те же ферменты часто отвечают за одни и те же химические реакции у всех без исключения видов.

«От слона до маслянокислой бактерии — всюду одно и то же!» — заявил в 1926 г. голландский биохимик Альберт Клюйвер.

Может быть, биохимические основы и одинаковы у всех живых организмов, но и различия между ними огромны. Самое важное из них — наследственность. В начале XX в. генетики открыли законы, в соответствии с которыми животные, растения и грибы передают потомкам свои гены. Но бактерии, такие как E. coli, казалось, не хотели играть по общим правилам. Более того, на первый взгляд у них вообще не было генов.

Большую часть информации о наследственности генетики в то время получали из лабораторий, наполненных мушками и гнилыми бананами. Томас Хант Морган, биолог из Колумбийского университета, разводил плодовую мушку дрозофилу — Drosophila melanogaster, чтобы выяснить, как родительские признаки передаются потомкам. Морган назвал факторы, определяющие те или иные признаки, генами, хотя о том, что такое на самом деле гены, не имел никакого представления. Он знал, однако, что свои гены потомку передают и мать, и отец, и что иногда ген может не проявиться в первом поколении, но вновь «всплыть на поверхность» в следующем. Он мог скрестить красноглазую мушку с белоглазой и получить целое поколение исключительно красноглазых мушек. Но если он скрещивал этих гибридных мушек между собой, то у некоторых мушек второго поколения вновь появлялись белые глаза.

Морган и его студенты искали в клетках дрозофилы молекулы, которые могли бы иметь какое?то отношение к этим таинственным генам. Их внимание привлекли странные структуры в ядре клетки — хромосомы. После специальной окраски хромосомы становятся похожи на мятые полосатые чулки. При этом ученые обнаружили, что полоски на хромосомах дрозофилы столь же характерны и уникальны, как и вездесущие ныне штрихкоды. Большая часть хромосом парная, при этом одна хромосома в паре унаследована от матери, другая — от отца. Сравнив их «полоски», Морган и его студенты показали, что от поколения к поколению они могут меняться. В процессе развития половых клеток дрозофилы парные хромосомы подходят друг к другу вплотную и обмениваются сегментами. От того, какие именно сегменты унаследует мушка — потомок, зависит и комбинация генов, которую она получит.

Закономерности наследования выглядели почти как какие?то математические абстракции. Джордж Бидл, один из аспирантов Моргана, решил вернуть гены с высот абстракции на землю и попытался выяснить в точности, как именно гены определяют цвет волос и другие признаки. Вместе с биохимиком Эдвардом Тейтемом Бидл попытался проследить путь от генов дрозофилы до молекул, из которых состоит окрашивающий ее глаза пигмент. Однако этот эксперимент оказался слишком сложным. Бидл и Тейтем отказались от плодовых мушек в пользу более простого вида — хлебной плесени Neurospora crassa.

Конечно, у хлебной плесени нет таких очевидных признаков, как глаза и крылья; тем не менее она синтезирует многочисленные ферменты, часть из которых отвечает за производство аминокислот. Чтобы посмотреть, каким образом гены плесени управляют синтезом этих ферментов, Бидл и Тейтем подвергали плесень воздействию рентгеновского излучения. Ученые знали, что у личинок мух при подобном воздействии некоторые гены мутируют, и эти мутации приводят к появлению новых признаков — лишних крылышек или другой окраски глаз, которые мутанты могут передавать следующим поколениям.

Теперь Бидл и Тейтем занялись производством мутантов хлебной плесени. Некоторые из них теряли способность синтезировать определенные аминокислоты, потому что лишались ключевого фермента. Но если Бидл и Тейтем затем скрещивали мутантную плесень с обычной, то некоторые потомки такого союза вновь обретали эту способность. В 1941 г. ученые сделали вывод: за каждым ферментом хлебной плесени стоит один ген.

Вырисовывалась смутная, но непротиворечивая картина того, как работают гены — по крайней мере гены животных, растений и грибов. Но бактериям в этой картине, казалось, места не было. Становилось все очевиднее, что гены находятся в хромосомах, а у бактерий хромосомы, на первый взгляд, вообще отсутствовали. Если у них и есть гены, то в те времена ученые почти не надеялись их найти. Гены дрозофилы удавалось изучать благодаря тому, что мушки размножаются половым путем. В ходе этого процесса хромосомы обмениваются участками, и гены попадают к потомкам в разных сочетаниях. На бактериях, однако, ученые не могли проводить подобных экспериментов, потому что они не имеют пола. На первый взгляд бактерия просто растет, а затем делится пополам. Многие исследователи рассматривали бактерии просто как мягкие мешочки с ферментами — принципиально иной тип жизни.

Со временем выяснилось, однако, что вся жизнь на Земле, включая и бактериальную, основана на одних и тех же фундаментальных принципах. Раскрыть ученым многие тайны этого единства было суждено бактерии E. coli, которая стала для биологов одним из самых мощных инструментов исследования жизни.

Превращение обычной бактерии в инструмент науки началось с простого вопроса. Эдвард Тейтем заинтересовался, применимо ли к бактериям открытое им в экспериментах с плесенью правило «один ген — один фермент». Он решил провести такой же опыт, как с хлебной плесенью, но на этот раз облучить не плесень, а бактерии. Для эксперимента Тейтем выбрал штамм E. coli с обозначением К-12. Он был выделен в 1922 г. из организма больного дифтерией в штате Калифорния, и с тех пор культура этого штамма поддерживается в Стэнфордском университете для занятий по микробиологии.

Выбор Тейтема был обусловлен практическими соображениями. Подобно большинству других штаммов E. coli, К-12 безвреден. Кроме того, E. coli способна самостоятельно производить все необходимые ей аминокислоты и множество других молекул. Для питания ей почти ничего не нужно, кроме сахара, аммиака и некоторых микроэлементов. Если E. coli использует многочисленные ферменты, чтобы превращать пищу в живую материю, то мишеней для рентгеновского облучения у Тейтема должно было оказаться достаточно. Даже если бы облучение привело к появлению всего нескольких мутантных бактерий нужного типа, благодаря «роскошному росту», которым знаменита E. coli, ученый смог бы их увидеть. Ведь одна — единственная бактериальная клетка E. coli способна очень быстро, всего за сутки, дать колонию, видимую невооруженным глазом.

Итак, Тейтем обрабатывал колонии E. coli мощным рентгеновским излучением, способным убить 9999 из каждых 10000 бактерий. Среди немногочисленных выживших он отыскивал мутантов, способных расти, только если их обеспечивали какой?то определенной аминокислотой. С такой поддержкой мутанты могли даже размножаться, но их потомство наследовало тот же дефект. По существу, Тейтем получил такой же результат, что и в опытах с хлебной плесенью. Было похоже, что за каждым ферментом E. coli тоже скрывается один- единственный ген.

Это было серьезное открытие, но Эдвард Тейтем подходил к оценке его значения с осторожностью. Да, получалось, что у бактерии тоже есть гены, но наверняка он этого утверждать не мог. Лучший способ доказать наличие у биологического вида генов — скрестить мужские и женские особи и изучить их потомство. Но E. coli, как ни печально, беспола и в брак не вступает. «Поэтому понятие “ген” можно использовать по отношению к бактериям лишь в самом общем смысле», — писал Тейтем.

Положение несколько изменилось, когда в лаборатории Тейтема в Йельском университете появился мрачный молодой студент. Джошуа Ледербергу было всего 20 лет, но амбиции у него были серьезные: выяснить, есть ли у бактерий половое размножение. Во время службы в армии в годы Второй мировой войны Ледербергу довелось работать в военно — морском госпитале на Лонг — Айленде. В частности, он занимался исследованиями малярийного паразита, завезенного в Америку моряками, воевавшими в Тихом океане. Он наблюдал за этими простейшими и видел, что те иногда размножаются делением, а иногда образуют женские и мужские формы и вступают в половой процесс. Что если у бактерий тоже время от времени происходит половой акт, просто никто этого до сих пор не замечал? И пускай другие высмеивают его идею как необоснованную фантазию, Ледерберг твердо решил, что игра стоит свеч, и, как он сам говорил позже, «сделал ставку на бактериальный секс».

Услышав про эксперименты Тейтема, Ледерберг понял, что их вполне можно приспособить к поиску полового размножения у бактерий. У Тейтема к тому времени уже собралась хорошая коллекция мутантных форм E. coli штамма К-12, в том числе и двойных мутантов — бактерий, которым для выживания требовалась постоянная подкормка двумя химическими соединениями. Ледерберг рассудил, что если смешать две разновидности двойных мутантов, то они, возможно, сумеют через половой акт передать друг другу работающие версии поврежденных генов.


Две E. coli занимаются «бактериальным сексом»

Ледерберг выбрал для эксперимента мутантный штамм, не способный самостоятельно производить аминокислоту метионин и один из витаминов группы В — биотин. Второй выбранный им штамм не мог производить две другие аминокислоты — треонин и пролин. Ледерберг поместил оба штамма в бульон, насыщенный всеми четырьмя необходимыми веществами, так чтобы мутантные бактерии могли расти и размножаться. В течение нескольких недель они жили вместе в бульоне, где у них были все условия для гипотетического «секса».

Через некоторое время Ледерберг взял пробы получившейся бактериальной культуры и перенес их в свежие чашки Петри.

Теперь он поместил бактерии в среду, где отсутствовали все четыре питательных вещества, которые те не умели синтезировать самостоятельно: треонин, пролин, метионин и биотин. Ни один из исходных мутантных штаммов не смог бы выжить в такой среде. И если бы их потомки были всего лишь копиями предков, размышлял Ледерберг, они тоже должны были прекратить рост и погибнуть.

Несколько первых недель принесли ученому лишь разочарования — погибшие пробы, мертвые колонии, но в конце концов Ледерберг получил в одной из чашек живую и процветающую колонию E. coli. Какая?то часть бактерий обрела способность производить все четыре аминокислоты. Ледерберг сделал вывод о том, что их предки должны были обменяться генами в ходе некоего процесса, сходного с половым актом[1]. Кроме того, в ходе этого процесса они доказали, что обладают генами.

В последующие годы открытие Ледерберга позволило ученым разводить E. coli как плодовых мушек; в результате им удалось изучить ее гены намного подробнее, чем раньше. Двенадцать лет спустя, в «преклонном» возрасте 33 лет, Ледерберг (совместно с Тейтемом и Бидлом) получил Нобелевскую премию по медицине. Но в 1946 г., увидев в чашке Петри вожделенные точки колоний, развившихся из бактерий, которые появились в результате полового размножения, Ледерберг позволил себе пометить результаты опыта в своей записной книжке одним — единственным словом: «Ура!»

<<< Назад
Вперед >>>

Генерация: 1.296. Запросов К БД/Cache: 2 / 0
Вверх Вниз