Книга: Земля и космос. От реальности к гипотезе

Глава 10 Далекое расстояние

<<< Назад
Вперед >>>

Глава 10

Далекое расстояние

Увы, меня всегда считали немного наивным, и подобное мнение обо мне особенно часто складывалось, когда я был молод.

К примеру, когда мне было девятнадцать, меня пригласили в семью, которая проживала в соседнем штате. Мне объяснили, на какой станции нужно сойти, но мне не пришло в голову спросить дальнейшую дорогу — от станции до самого дома. Мне не пришло в голову взять на станции такси. Мне также не пришло в голову позвонить моему предстоящему хозяину и попросить его за мной явиться.

Единственное, что я сделал, — это спросил на станции человека, который покупал билеты, как мне пройти на нужную улицу. Он объяснил мне дорогу. Я неуверенно спросил его: «А как долго мне нужно идти?»

Он бесцеремонно ответил: «Долго!»

Я вздохнул, взглянул в ту сторону, куда мне предстояло идти, и пошел. Я прошел несколько миль, прежде чем сообразил спросить кого-нибудь из прохожих о дальнейшей дороге, поскольку мне казалось, что я нахожусь уже недалеко от нужного дома.

Вы, наверное, догадались, что я давно прошел этот дом и вынужден был возвратиться обратно. Когда человек, бравший билеты на станции, сказал, что мне идти далеко, я не задал ему самого элементарного вопроса: «А как далеко это „далеко“?»

«Как далеко это „далеко“?» — это был вопрос, который задавали себе астрономы в начале XIX века. Они знали, что звезды находятся далеко, немыслимо далеко, но не знали насколько.

На этот вопрос начали отвечать в 1830-х, когда было обнаружено, что ближайшая звезда находится на расстоянии 4,3 светового года (один световой год равен 5,8 триллиона миль). В конце концов (примерно столетием позже) стало известно, что наша Галактика, состоящая более чем из ста миллиардов звезд, представляет собой протяженную плоскую спираль примерно в 100 000 световых лет в поперечнике.

Это расстояние может вызвать восхищение, но для астрономов оно сродни зубной боли. Чем дальше расположена звезда, тем слабее она, тем меньше ее параллакс, тем хуже видно ее собственное движение.

Это означает, что, если какая-нибудь звезда уходит на большее расстояние, труднее определить расстояние до нее. Метод измерения параллакса (самый первый способ и самый достоверный), к примеру, дает удовлетворительные результаты только на расстояниях до 100 световых лет, то есть в пределах, близких к границам нашей Солнечной системы.

Таким образом, к началу XX века перспектива исследования Вселенной за пределами нашей Галактики — к примеру, измеряя расстояние — казалась практически невозможной.

К тому же многие считали, что за пределами нашей Галактики ничего и нет. Единственное, что было видно, — это некоторые расплывчатые образования в небе, называемые туманностями. Некоторые из этих туманностей определенно находились внутри нашей Галактики, но другие, возможно, были за ее пределами. Эти подозрительные туманности вызывали особый, все возрастающий интерес в начале XX века.

Самые большие надежды при изучении столь дальних объектов возлагались на астрономические приборы, которые могли определять характеристики независимо от расстояния. Основным явлением, которое можно было использовать, был сдвиг спектральных линий, вызванный радиальной скоростью (то есть скоростью движения от нас или к нам. — Примеч. пер.) некоторых астрономических объектов при их движении к нам (при этом происходил сдвиг к сине-фиолетовой части спектра) и при движении от нас (при этом происходил сдвиг к оранжево-красной части).

Чем дальше находилась звезда, тем труднее ее было разглядеть и тем труднее было наблюдать ее спектр по ее свету. Приходилось применять все больше ухищрений для распознания и измерения положения спектральных линий; еще более трудным было определить смещение. К тому же очень трудно определить радиальную скорость на больших расстояниях. Тем не менее, если спектр можно получить вообще, тогда радиальную скорость можно измерить с достаточной точностью независимо от расстояния. Очень далекий объект, у которого мы можем получить фотографируемый спектр с распознаваемыми линиями, способен двигаться к нам или от нас — и это движение определить не сложнее, чем у близкого объекта.

Во второй половине XIX столетия радиальные скорости были измерены для многих звезд (ныне известны радиальные скорости тысяч звезд). Величины этих радиальных скоростей звезд находятся в довольно узком диапазоне. Для некоторых звезд радиальная скорость практически равняется нулю (в конце концов, некоторые звезды могут двигаться параллельно нашему собственному курсу или могут пересекать линию нашего движения под прямыми углами, так что в данный момент они не приближаются и не удаляются). С другой стороны, некоторые звезды имеют радиальную скорость, равную 400–500 км/с относительно Солнца. Но такие величины редки. Большинство звезд имеют скорость в диапазоне 10–40 км/с — и, похоже, из них столько же удаляется, сколько приближается.

На основе радиальных скоростей можно сделать некоторые заключения относительно собственного движения (то есть движения перпендикулярно линии зрения). Такое собственное движение может быть измерено непосредственно для ближайших звезд — и радиальное движение данной звезды не обязательно имеет отношение к собственному движению этой звезды. Однако среди большого числа звезд существуют статистические соотношения, и это может быть использовано, чтобы получить представление об истинном движении, в трех измерениях, относительно Земли.

Когда это было сделано, полученная картина Галактики на первый взгляд представляла собой нечто вроде осиного гнезда, движущегося наугад во всех направлениях. Более внимательное изучение показало, что можно найти в движении звезд некоторую закономерность. В 1904 году голландский астроном Якобус Корнелис Каптейн доказал, что звезды движутся двумя потоками и движение одного потока противоположно движению другого.

Позднее, в 1925 году, другой голландский астроном, Ян Хендрик Оорт, объяснил эти потоки как результат вращения Галактики. В целом чем дальше астрономический объект находится от гравитационного центра, относительно которого он вращается, тем медленнее его орбитальное вращение. В нашей Солнечной системе чем дальше планета отстоит от Солнца, тем медленнее она движется по своей орбите. В нашей Галактике чем отдаленнее звезда от своего галактического центра, тем медленнее она вращается на своей орбите вокруг центра.

Звезды, более отдаленные от центра Галактики, чем Солнце, будут двигаться медленнее, чем оно. Мы опережаем их, и они медленно отстают от нас. Звезды, более близкие к центру Галактики, чем Солнце, движутся быстрее и нас опережают. Таким образом, получается два потока в противоположных направлениях.

Радиальные скорости, таким образом, оказываются исключительно мощным средством, поскольку они дают нам картину большого медленного вращения огромной Галактики вокруг своей оси — картину, которую мы вряд ли получили бы с такой определенностью любым другим путем.

Но это было только начало.

Следующий этап в насыщенной перипетиями истории определения радиальных скоростей начался в 1912 году, когда американский астроном Весто Мелвин Слайфер измерил радиальную скорость туманности Андромеды. Эту туманность некоторые астрономы считали находящейся за пределами нашей Галактики. Из тех туманностей, которые можно было видеть невооруженным глазом, это была единственная, относительно которой существовало такое предположение. Таким образом, она казалась самым дальним объектом, который человеческий глаз способен видеть без приборов.

Хотя туманность и находилась далеко, Слайфер тем не менее смог получить из ее света спектр. Ему удалось определить, с каким спектром он имеет дело, и из этого вывести, насколько данный спектр сдвинулся относительно нормального положения. По полученной радиальной скорости он мог сказать, находится ли туманность внутри нашей Галактики или за ее пределами.

Смещение оказалось в сторону синего цвета, и Слайфер сделал заключение, что туманность Андромеды приближается к Земле со скоростью 200 км/с. Эта цифра была в пределах радиальных скоростей, часто наблюдаемых у астрономических объектов. Она заняла свое место в астрономических справочниках, но ничего сенсационного из этого не следовало.

Успех привел Слайфера к мысли попытаться измерить скорость другой туманности, которая похожа на созвездие Андромеды, но светится не столь ярко и, по всей вероятности, находится на большем расстоянии. К 1917 году ему удалось измерить радиальные скорости пятнадцати из них.

Полученные результаты вызвали у него недоумение. Когда ученые не видят причин к обратному, они ожидают встретиться со случайным распределением. При измерении радиальных скоростей туманностей следовало бы ожидать, что примерно половина этих туманностей будет удаляться, а половина приближаться.

Оказалось, что это не так. Из пятнадцати созвездий, чьи радиальные скорости были измерены Слайфером, только две (Андромеда и еще одна) приближались. Другие тринадцать удалялись от Солнца.

Более того, это удаление оказалось неожиданно велико. Тринадцать туманностей улетали со скоростью в среднем 640 км/с, а это значение намного превосходило максимальную величину радиальной скорости для любой наблюдаемой звезды.

Если туманности являются частью нашей Галактики, то эти данные были непонятны. С чего это одной группе объектов в Галактике удаляться от нас почти с одинаковыми огромными скоростями, тогда как другие объекты так себя не ведут?

Это необъяснимое поведение стало еще одним фактом, говорящим о необычной природе туманностей.

К счастью, вопрос о том, являются ли туманности галактиками или же это просто какие-то странности во Вселенной, стоял не долго. В том же 1917 году, когда Слайфер обнаружил непонятное явление, другой американский астроном, Эдвин Поуэлл Хаббл, начал использовать новый телескоп в 100 дюймов радиусом в Маунт-Вильсоне в штате Калифорния. Этот телескоп оказался достаточно мощным для того, чтобы разглядеть расплывчатую до сих пор туманность Андромеды. Оказалось, что туманность представляет собой скопление очень слабых звезд — слабых ввиду большого расстояния до них.

Это было последнее требуемое свидетельство, необходимое для того, чтобы с уверенностью утверждать, что и туманность Андромеды, и аналогичные объекты являются скоплениями звезд за пределами нашей Галактики и сами в полной мере являются галактиками. С этого времени можно было уверенно говорить о «галактике Андромеда», а не о «туманности Андромеда», и определиться, что окружающий нас набор звезд является галактикой Млечного Пути. (Если вам это интересно, в настоящее время полагают, что галактика Андромеда находится от нас примерно в 2,2 миллиона световых лет и является самым далеким объектом, который можно видеть невооруженным глазом. — Примеч. авт.)

Это прояснило дело. Стало понятно, что объекты за пределами нашей Галактики могут вести себя иначе, чем объекты нашей Галактики. Нет ничего удивительного, что эти галактики движутся быстрее относительно друг друга, чем звезды внутри данной галактики, — как не удивительно, к примеру, что автомобили внутри города и на автострадах движутся с разными скоростями.

Но все же число галактик, которые удалялись, казалось неоправданно большим — тринадцать из пятнадцати.

Но возможно, просто так совпало, что Слайферу попадались только удаляющиеся галактики. Если изучить большее число галактик, то распределение удаляющихся и приближающихся галактик могло быть и равным.

Американский астроном Мильтон Ла Салле Хамасон взялся за решение этой задачи. Это было непросто. Естественно, Слайфер изучил самые яркие галактики, чей спектр можно было получить без труда. Хамасон вынужден был перейти к менее ярким. Ему порой приходилось ждать несколько дней, чтобы получить спектр едва различимых тусклых пятнышек туманностей отдаленных галактик. Трудности были значительными, но ему удалось справиться со всеми проблемами.

Однако, к изумлению Хамасона, все спектры, что он получил, имели красное смещение! Было похоже на то, что все галактики (кроме двух самых близких) удалялись. Дело усложняло то, что смещение в красную сторону было очень большим, представляя скорости не в сотни, а в тысячи километров в секунду. В 1928 году Хамасон измерил смещение в красную сторону галактики, имевшей название NGC 7619, и обнаружил по нему, что галактика удаляется со скоростью 3800 км/с.

Еще загадочней оказалось то, что, чем более далекой была галактика (и, таким образом, дальше от нас), тем быстрее она удалялась.

Это астрономам было трудно понять. Почему скорость движения галактик зависит от их расстояния до нас? Почему именно мы влияем на движение галактик? Что в нашей Галактике такого, что отталкивает другие галактики, и становится ли эта сила отталкивания больше с расстоянием? На протяжении долгого времени ученые задавали себе этот вопрос — в том числе и Альберт Эйнштейн, — но ими не было найдено никакой силы, притяжения или отталкивания, которая бы увеличивалась с расстоянием, и потому этот вопрос остался без ответа.

Астрономам пришлось более детально рассмотреть вопрос о красном смещении. В конце концов, наблюдается лишь красное смещение; то же, что галактики разбегаются, — это лишь вывод красного смещения, а этот вывод может оказаться неверным. С середины XIX столетия астрономы считали само собой разумеющимся, что смещение в красную сторону означает удаление источника света, но, может, наблюдаемое явление имеет и другое объяснение?

В конце концов, свет проходит очень большие расстояния, чтобы дойти до нас из других галактик. Эти расстояния могут быть больше, чем расстояния в нашей собственной Галактике. Возможно, что-то происходит со светом на очень больших расстояниях, и это «что-то» приводит к смещению в красную сторону, если даже источник света (в данном случае галактика) относительно нас неподвижен или почти неподвижен. Возможно, смещение в красную сторону может говорить о скоростях удаления звезд только в нашей Галактике, — относительно же других галактик вмешивается какое-то другое явление.

К примеру, может быть такое, что газ и космическая пыль, которые свет встречает на своем пути за миллионы световых лет, постепенно поглощает часть этого света на своем пути к нам? Возможно, поглощаются в первую очередь короткие волны, что лишает спектр составляющих в сине-фиолетовой части, и потому спектр кажется более красным, чем ему следует быть.

Любители в науке, размышляя над смещением в красную сторону в спектре галактик, иногда приходят к этой мысли (как и автор книги, которую я упомянул в начале предыдущей главы), однако эта идея говорит о полном непонимании явления. Свет отдаленных галактик действительно должен получить преобладание красного, но только за счет небольшой потери интенсивности в сине-фиолетовой части спектра; никакого смещения длин волн наблюдаться не должно. Другими словами, этот эффект приведет к общему «покраснению», но не к смещению спектральных линий в красную сторону.

Хорошо, тогда предположим, что свет, когда он проходит большое расстояние, постепенно теряет свою энергию, но со столь малой скоростью, что она становится заметной лишь на расстояниях между галактиками. Длина волны зависит от энергетического содержимого света, а это значит, что, когда свет проходит миллионы световых лет, его длина волны постепенно уменьшается. Каждая спектральная составляющая сдвигается к красному краю спектра. Естественно, чем дальше галактика, тем больше энергии ее свет теряет и тем больше смещение в красную сторону. Это было бы прекрасное объяснение, которое позволило бы внести ясность в вопрос, не давая нашей Галактике какого-то особого места среди других. Все бы зависело лишь от расстояния.

Однако объяснение через «усталый свет» (как его стали называть) имеет свои трудности. Если не нарушать закона сохранения энергии, который ученые защищают особенно рьяно, можно предположить, что, когда свет постепенно теряет свою энергию, ее приобретает что-то другое. Но до сих пор астрономам не удалось обнаружить, каким способом энергия света может, проходя между галактиками, измениться таким образом, чтобы получилось наблюдаемое красное смещение. Нужного получателя энергии нет. (К примеру, стоящие на пути света молекулы будут поглощать фотон из падающего на них света, но не обязательно «переизлучат» фотон с меньшей энергией в том же самом направлении, в котором двигался фотон поначалу. Газ и пыль будут поглощать или рассеивать свет, но не будут делать чего-либо еще, а это «что-либо еще» обязательно требуется для того, чтобы мы наблюдали свет.)

Кроме того, потери энергии светом были бы заметны не только в виде смещения в красную сторону в свете галактик — их можно было бы найти при наблюдениях внутри нашей Галактики, а этого нет.

Таким образом, гипотеза «усталого света» оказалась несостоятельной как в теории, так и в наблюдениях, и ее пришлось (с неохотой) отбросить — по крайней мере до появления новых фактов.

Но произошло следующее. В 1916 году Эйнштейн выдвинул общую теорию относительности, в которой было положение, что свет, движущийся против гравитационного поля, теряет энергию (что не противоречит закону сохранения энергии). Свет, идущий от любой звезды, движется против поля тяготения, так что он покажет гравитационное смещение в красную сторону.

Тогда может быть такое, что красное смещение галактик является по происхождению гравитационным?

Ответ дать было трудно, поскольку при обыкновенных обстоятельствах это смещение столь мало, что его не замечали. Чтобы смещение можно было различить, требовалось не только очень большое гравитационное поле — оно должно было иметь большую плотность. А поле достаточно большой плотности могло иметь только большое количество материи, заключенной в малый объем, к примеру белые карлики.

Тогда предположим, что смещение в красную сторону света отдаленных галактик имеет гравитационное происхождение и говорит об их невероятной плотности. Но даже если сделать такое предположение, то возникает новый вопрос: если объяснять красное смещение увеличением плотности галактик по мере их удаления от нас, то почему именно Земля является центром, от которого происходит увеличение плотности галактик?

Приходится снова вернуться к скорости удаления галактик как к единственному разумному объяснению красного смещения и странной связи между скоростью и расстоянием от нас.

Хаббл справился с этой задачей. Он перебрал все возможные методы определения относительных расстояний до галактик. Среди самых ближайших довольно просто различить группу пульсирующих звезд под названием цефеиды. Из их скорости пульсаций и видимой яркости можно определить относительные расстояния до них (и, таким образом, относительные расстояния до содержащих их галактик).

В более отдаленных галактиках таких звезд, как цефеиды, нет — зато есть несколько исключительно ярких звезд. Предположим, что существует какой-то предел свечения и что самая яркая звезда в каждой галактике находится на этом пределе. Предположим также, что все галактики в целом имеют примерно равное свечение. В этом случае можно определить относительные расстояния до содержащих эти звезды галактик.

Наконец, где галактики слишком далеки, чтобы были заметны отдельные звезды, можно предположить, что из их общей яркости также можно определить относительные расстояния до них.

Так были определены относительные расстояния, и как оказалось, скорость удаления имеет прямое отношение к расстоянию между нами и галактиками, как это было определено в свое время по красному смещению. Об этой зависимости Хаббл объявил в 1929 году. Она получила название закон Хаббла. Если галактика А в x раз дальше от нас, чем галактика В, то галактика А удаляется от нас в x раз быстрее, чем галактика В.

Неожиданно астрономы получили очень мощное средство (если, конечно, закон Хаббла правилен) для измерения расстояний до самых дальних видимых объектов. Как только расстояния до ближайших галактик можно было измерить каким-нибудь методом (любым, за исключением метода красного смещения), тогда сразу становились известными и расстояния до более удаленных галактик в этом направлении.

В 1950-х годах с помощью 200-дюймового телескопа были определены галактики, которые размещались на удалении в 1,5 миллиарда световых лет. В 1960-х были открыты квазары, которые располагались от нас на удалении 8–9 миллиардов световых лет, в то время как край наблюдаемой Вселенной, как было вычислено, располагается на расстоянии в 12,5 миллиарда световых лет.

Но мы все еще не нашли ответа, какая связь существует между расстоянием и скоростью удаления.

Этот ответ пришел из общей теории относительности Эйнштейна. Для нее Эйнштейн выработал набор «уравнений поля», которые описывают общие свойства Вселенной (это стало началом современной космологии). Эйнштейн решил уравнения поля для статичной Вселенной тем, что сделал постоянной общую плотность материи.

Однако в 1917 году голландский астроном Виллем де Ситтер отметил, что возможно и другое решение, при котором общая плотность материи Вселенной постоянно уменьшается со временем.

Чтобы понять такое постоянное уменьшение общей плотности, нужно предположить, что Вселенная состоит из частиц постоянной плотности, которые всегда движутся друг от друга с постоянной скоростью. Тогда Вселенная будет состоять из неизменных частиц и все увеличивающегося пространства, из-за чего общая плотность будет уменьшаться.

Де Ситтер исследовал такую возможность как чисто теоретическую, но, когда Хаббл создал свой закон, довольно скоро стало ясно, что этот закон совпадает с предположением де Ситтера.

Во Вселенной отдельные галактики могут рассматриваться как ее части. Галактики сохраняют свою форму благодаря взаимному притяжению составляющих их звезд, так что общая плотность в пределах галактики со временем не изменяется. Многие галактики, находящиеся относительно близко друг к другу, могут притягиваться гравитационными силами, так что общая плотность внутри некоторого набора галактик будет оставаться неизменной. Когда речь пойдет о галактиках в последующих главах, имейте в виду, что я буду касаться изолированных галактик или гравитационно связанных наборов галактик.

Если галактики постоянно движутся в разные стороны, общая плотность материи во Вселенной постоянно уменьшается. Тогда Вселенную следует назвать «расширяющейся Вселенной».

В постоянно расширяющейся Вселенной наблюдатель одной из галактик будет видеть все другие галактики удаляющимися. Следовательно, легко доказать (хотя я и не буду этого здесь делать), что в такой Вселенной закон Хаббла должен соблюдаться. Чем дальше наблюдаемая галактика от наблюдающей, тем быстрее становится скорость удаления наблюдаемой галактики от той, где находится наблюдатель.

Это исключает явный парадокс в законе Хаббла. Теперь больше нет ничего магического в нас, нет странной особенности нашей Галактики, по которой скорость «разбегания» всех галактик зависит от их расстояния именно до нашей Галактики. То, что мы можем наблюдать с Земли, мы способны также видеть из любой другой галактики во Вселенной. (Приближение к нам галактики Андромеда не является нарушением принципа расширяющейся Вселенной. Галактика Андромеда — часть группы галактик, в которую входит и наша Галактика Млечный Путь. Эти две галактики вместе с примерно двумя дюжинами галактик гравитационно связаны и движутся относительно друг друга независимо при общем расширении Вселенной. — Примеч. авт.)

Теперь кажется просто удивительным, что вся эта логическая цепочка началась с австрийского физика, слушавшего определенные звуки трубы, когда трубач двигался мимо него на вагоне-платформе (см. главу 9). Начавшееся тогда исследование завершилось менее чем через столетие появлением величественной картины Вселенной, раскинувшейся на протяжении миллиардов световых лет, Вселенной в ее постоянном и колоссальном расширении.

Это именно тот вид перехода от совершенно прозаических вещей к сложным теориям, который возможен только в том случае, если «играть» в науку корректно.

<<< Назад
Вперед >>>

Генерация: 1.811. Запросов К БД/Cache: 3 / 1
Вверх Вниз