Книга: Наука о живом

Глава 15 Клетки и ткани

<<< Назад
Вперед >>>

Глава 15 Клетки и ткани

Клетку можно рассматривать с двух весьма различных точек зрения. С одной стороны, ее можно считать наименьшим подразделением организма, способным к автономному существованию, хотя «автономное» существование — это довольно-таки приблизительное описание того очень тщательно подогнанного окружения, которое необходимо обеспечить клетке, если мы хотим сохранить ее живой после удаления из организма. С другой стороны, клетку можно считать административным округом ядра. Когда сперматозоид и яйцеклетка соединяются, образуя оплодотворенное яйцо, или зиготу, из которой развивается всякий организм, размножающийся половым путем, их ядра сливаются и объединяют свою генетическую информацию. На ранних стадиях развития зигота последовательно делится на 2, 4, 8, 16, 32 клетки и т. д., хотя довольно скоро отдельные клетки начинают делиться неодновременно. Таким образом возникает многоклеточный организм, и совершенно все равно, будем ли мы говорить об организме, построенном из клеток, или представлять себе клетку как часть организма (в одних случаях больше подойдет первое определение, а в других — второе). Именно в ядре клетки содержится ДНК, а значит и генетическая информация — инструкции, определяющие характер протекающего в клетке синтеза и остальных форм ее физиологической деятельности. Ядро обычно расположено приблизительно в центре клетки и более или менее симметрично окружено внеядерной ее частью — цитоплазмой, которой принадлежат исполнительные функции. Рассматриваемое таким образом, соединение клеток в ткани обеспечивает контроль ядер над деятельностью тканей, а тем самым и над деятельностью всего организма. {139}

Клеточная теория утверждает, что все ткани являются клеточными либо по строению, либо — если они, как, например, кости, в значительной части состоят из неорганического строительного материала — по происхождению. Величайшим триумфом клеточной теории было признание того факта, что даже нервная система вопреки своему внешнему виду имеет клеточный характер. Составляющие ее клетки называются нейронами, и, как и следовало ожидать, учитывая их особую функцию — передавать нервные импульсы, — нейроны очень далеко ушли от той типичной шаровидной формы, которая обычно ассоциируется с клеткой. Наиболее похожая на клетку часть нейрона называется его телом или перикарионом, и в нем находится ядро. Передача нервного импульса обеспечивается чрезвычайно длинными цитоплазматическими отростками, которые образуют нервные волокна, или аксоны. Источник переносимой нейроном информации, определяющей все специфические процессы синтеза, тем не менее остается в ядре клетки, и поэтому возникает коварный вопрос*: каким же образом такой контроль осуществляется на расстоянии, достигающем у крупных животных нескольких метров? На самом деле тут происходит непрерывный отток или передача вещества от тела клетки по всей длине аксона. Если перерезать нервное волокно, то часть, отделенная от тела нейрона, просто умирает, а восстановление начинается с того конца, который остался соединенным с телом клетки. Это восстановление, собственно говоря, представляет собой продолжение процесса передачи клеточного вещества.

Клетки так сильно разнятся между собой, что попросту невозможно выбрать какую-либо из них в качестве типичной — с точки зрения как ее строения, так и функционирования. Однако можно не сомневаться, что перед умственным взором цитолога, если он хочет представить себе типичную клетку, возникает фибробласт. Фибробласты составляют целую группу клеток соединительной и скелетной ткани, включающую фибробласты соединительной ткани, остеобласты — костной и хондробласты — хрящевой. {140}

Вопреки только что высказанным оговоркам и на» мекам, что было бы нелепо считать фибробласты типичными клетками, они тем не менее составляют достаточно многочисленный класс, чтобы их свойства заслуживали описания. Живые и здоровые, они под обычным оптическим микроскопом почти не видны и, лишь заболев, начинают преломлять свет — тогда их уже легко различить. Однако под микроскопом, специально приспособленным для наблюдения живых клеток («фазово-контрастным»), хорошо видны темные эллипсовидные тела — их ядра, а если клетка прикреплена к какому-нибудь субстрату вроде стекла или слюды, можно увидеть, что края ее образуют нитевидные или плоские выросты, которые на редкость неудачно именуются псевдоподиями. Биология чрезвычайно богата такой до смешного пышной терминологией. Верхом нелепости является, пожалуй, термин «псевдонавицелла», используемый для описания репродуктивной формы, временно возникающей в жизненном цикле у ничем не примечательного паразита дождевого червя: термин этот тем более удивителен, что спутать обозначаемый им объект с лодочкой не смог бы даже зоолог, нуждающийся в помощи психиатра.

Викторианские зоологи, выдумывавшие такие нелепые термины, по-видимому, пытались что-то ими доказать — хотя бы самим себе: в ту эпоху, когда снобизм развился до крайностей, для нас почти непостижимых, термины эти должны были убедить тех, кто в противном случае мог бы посмотреть на них свысока, что зоологи — люди глубокие, знающие и их науку необразованным профанам понять не дано.

При помощи своих псевдоподий, а также благодаря активному изменению формы всей клетки фибробласты могут передвигаться по субстрату со скоростью до нескольких миллиметров в сутки. Другие клетки, в том числе большинство белых кровяных клеток и особенно лимфоциты, способны передвигаться со скоростью до нескольких миллиметров в час. Когда фибробласты делятся, как это делает большинство клеток (неспособность делиться — например, у нейронов, которые, по общему мнению, настолько специализированы, что стали конечными клетками, {141} или у не имеющих ядра эритроцитов — всегда требует какого-то особого объяснения), клеточное движение играет важную роль в расхождении дочерних клеток. Сами фибробласты не способны к фагоцитозу, т. е. они не могут активно захватывать и поглощать живые клетки вроде бактерий, но, как и многие другие клетки, они обладают довольно таинственной способностью втягивать мельчайшие частицы любой среды, в которой живут, — явление это называется пиноцитозом. В фазово-контрастный микроскоп можно увидеть еще один элемент их структуры — многочисленные мелкие, очень подвижные круглые или палочкообразные органоиды, митохондрии, в которых осуществляется внутриклеточное дыхание.

Подвижность фибробластов и их способность делиться делают их особенно подходящим объектом для культивирования ткани — метода, с помощью которого в клетках или фрагментах тканей поддерживается жизнь, так что они, будучи помещены в стеклянные сосуды или камеры, растут (если у них есть такая способность) в специальной питательной среде при температуре тела. Фибробласты вездесущи и так легко приспосабливаются к жизни in vitro, что часто растут в культуре ткани, когда выращивающий их ученый воображает, будто он выращивает что-нибудь совсем другое. Метод культуры ткани оказался великим благодеянием для экспериментальной биологии; кроме того, он имеет определенное отношение и; к проблеме старения (см. ниже) и сделал возможным развитие прикладной медицинской вирусологии, поскольку позволил размножать вирусы в количествах, необходимых для промышленного производства вакцин. Выращивание тканей не требует особенно сложных методик, а поскольку питательная среда, в которой растут клетки, чаще всего животного происхождения (сыворотка крови или тканевые экстракты), то получить ее нетрудно. Однако, чтобы добиться надежных и воспроизводимых результатов, необходимы большая тщательность и внимание к деталям: естественные враги всякой культуры — это бактериальная или грибковая инфекция, а среда, в которой растут ткани, прекрасно подходит для роста и бактерий, и грибов, так что совершенно обязательно строжайшее соблюдение асептики. Выращивание больших {142} количеств вируса необходимо для производства вакцин, а большое количество определенных видов клеток, например лимфоцитов, нужно для таких целей, как производство антилимфоцитарной сыворотки, и потому выращивание тканей превратилось из лабораторного эквивалента надомного труда в индустриальный процесс. В очень больших количествах клетки выращиваются как колонии однослойной культуры в жидкой среде в отличие от полужидких сред ранней поры этого метода, которые имели то преимущество, что облегчали микроскопическое изучение клеток. В лабораторных исследованиях метод культуры ткани используется теперь в основном для изучения биологии клетки в специальных точно определенных условиях, для чего клетка изымается из сферы всех влияний организма и помещается в среду, которая точно известна и полностью контролируется. В истории культуры ткани был, однако, и темный период, когда рост клеток in vitro представлялся таким удивительным, а его результаты — такими изящными, что различные культуры изучались ради них самих, более для приятного времяпрепровождения, чем в реальных аналитических целях. Не стимулировал использования культуры ткани в аналитических целях и тот факт, что применявшаяся тогда питательная среда поддерживалась в студнеобразном состоянии с помощью сгустков фибрина крови, а это разъединяло клетки и препятствовало тесному контакту между ними, который, как мы теперь знаем, необходим для многих процессов в тканевой культуре. В ранние дни применения этого метода считалось (на основании экспериментов, которые с тех пор давно уже признаны ошибочными), что культуры ткани «бессмертны», т. е. что, достигнув определенных размеров, такая культура делится на две или несколько частей и каждая из них становится началом новой культуры, а та вновь начинает расти и при необходимости вновь делится на две, так что линия клеток бесконечна. Однако работа Хайфлика, подтвержденная большинством лабораторий во всем мире, ясно показала, что культуры ткани обычных клеток не только не бессмертны, но, наоборот, имеют строго определенный срок жизни. Они живут всего некоторое число поколений клеток и затем умирают. Согласно {143} Хайфлику, продолжительность их жизни зависит от возраста организма, из которого клетки были взяты. Клетки, подвергшиеся злокачественному перерождению — в организме или вследствие вирусной инфекции непосредственно в культуре, — этому правилу не подчиняются: они, по-видимому, способны делиться бесконечно. Эксперименты, породившие представление о бессмертности культур ткани, были проведены под наблюдением французского патофизиолога Алексиса Карреля в нью-йоркском Рокфеллеровском институте, и считалось, что культура жила с 1912 по 1939 год, однако, если это и верно, причины столь долгой жизни до сих пор еще неясны. Одна из возможностей такова: пища, которую получали клетки, представляла собой неочищенный экстракт эмбриональной ткани и в изобилии содержала взвешенные клетки, а скромные прислужники жрецов, руководивших ритуалом выращивания, не приложили достаточных стараний, чтобы их оттуда удалить. Другая, менее вероятная возможность заключается в том, что культуры все же вымерли и их попросту начали выращивать заново из свежей ткани на том основании, что погибнуть они могли только в результате недосмотра, использования токсичной среды или еще какой-либо случайности.

Многие биологи, учитывая бурный рост клеток культуры ткани, отсутствие в них дифференцировки и другие внешние черты их сходства со злокачественными клетками, полагали, что при обратной пересадке в организм они должны превратиться в раковые клетки. Однако никакого прогрессивного роста при обратной пересадке не наблюдалось. Теперь мы знаем, что эти опыты не отвечали поставленным задачам, так как в те времена, когда еще не были выведены инбредные линии мышей, культуры, проверявшиеся на злокачественность, по необходимости пересаживались мышам, отличным по своему генотипу от тех, из чьих клеток эти культуры выращивались. Следовательно, такие клетки вызывали иммунный процесс отторжения, который их и разрушал (см. гл. 13). Как только ошибка в постановке экспериментов была исправлена, очень быстро удалось установить, что немалое число культур ткани действительно подвергается злокачественным перерождениям, {144} особенно в лабораториях, где присутствуют онкогенные (вызызающие рак) вирусы вроде вируса полиомы. Взятые в целом, эти эксперименты учат нас никогда не отчаиваться слишком рано при отрицательных результатах.

Эксперименты Хайфлика связаны также с явлением старения, которое будет рассмотрено в гл. 20.

Значение клеточной структуры. Теперь мы можем вполне уверенно ответить на вопрос, который, естественно, ставил в тупик ранних исследователей клетки, особенно тех, над чьими мыслями тяготело понятие «протопиазмы» — таинственного полифазного коллоида, описанного на стр. 15. В самом общем виде вопрос этот сводится к следующему: в клетке осуществляется широкая деятельность по синтезу и другим процессам обмена веществ и сама ее жизнь с несомненностью зависит от процесса дыхания, который требует чрезвычайно синхронизированного совместного действия целой серии ферментов. Каким же образом вся эта деятельность регулируется так, что нужное событие происходит в нужное время и в нужном месте? В рамках протоплазменной теории это было совершенно непостижимо: нет ничего удивительного, что Р. А. Петере выдвинул понятие «клеточный скелет». Принятый всеми ответ на эту загадку удалось получить только благодаря использованию электронной микроскопии, в частности электронных микроскопов со средней разрешающей способностью. Ответ этот заключается в том, что синхронное выполнение всех многообразных действий клетки имеет структурную основу и что клетки заполнены вовсе не однородной слизью, первозданной или же чрезвычайно хитро сбалансированной, как это считалось в последние дни существования протоплазменной теории, а сложными, плотными на вид органоидами вроде ядра или уже упоминавшихся выше митохондрий, которые обеспечивают материальную опору для пространственного расположения ферментов, осуществляющих обмен веществ в клетке. Среди этих внутренних структур, особенно у клеток, предназначенных для синтеза или секреции, наиболее заметна эндоплазматическая сеть — извилистая внутренняя решетчатая система канальцев, тесно связанная с крошечными круглыми частицами, рибосомами, которые {145} служат в клетке местом сборки белковых макромолекул. Внутри ядра находятся более мелкие объекты такой же, как оно, формы — ядрышки, хранилища одного из видов нуклеиновой кислоты, играющего важную роль в синтезе клеточных белков (см. гл. 12). К органоидам, у которых связь молекулярной структуры с их функциями вполне ясна, относятся, естественно, и сами хромосомы, состоящие из ДНК, образующей с основным белком солеподобное соединение. В гл. 3 было объяснено, что функция ядра по переносу генетической информации обеспечивается и выражается молекулярным строением нуклеиновой кислоты внутри хромосомы. Митохондрии имеют характерную эллипсовидную форму и заполнены плотно уложенными поперечными перегородками, кристами, благодаря которым они, по-видимому, замечательно приспособлены для управления ферментами, занимающимися клеточным дыханием. Хотя большая часть компонентов митохондрий синтезируется согласно инструкциям, содержащимся в ядре клетки, сами митохондрии, как ни удивительно, обладают некоторым количеством ДНК, которая, таким образом, не вся сосредоточена в ядре. Это очень подвижные клеточные органоиды, и каждая митохондрия формируется заново только там, где до этого существовала другая митохондрия; размножение их представляет собой процесс, очень похожий на простое деление пополам. Существует интереснейшее предположение, подтвержденное немалым числом косвенных свидетельств, что митохондрии начали свой эволюционный путь как бактерии и, став сперва внутриклеточными паразитами, превратились впоследствии в необходимых симбионтов. Никому еще не удалось успешно выращивать митохондрии вне клетки, как выращиваются многие бактерии, но это вовсе не наносит смертельного удара по гипотезе об их бактериальном происхождении, поскольку совершенно не исключено, что их все-таки удастся вырастить, если будут подобраны правильные условия: ведь надо помнить, что существуют некоторые бактерии, особенно мико-бактерии, которые тоже очень трудно выращивать в бесклеточной среде вне организма.

Почти все упоминавшиеся до сих пор органоиды при правильных условиях легко различаются в клетке {146} под микроскопом, хотя, как известно, хромосомы невидимы в покоящемся ядре, т. е. в ядре между его делениями. Это никогда никого не смущало, так как генетические свидетельства подтверждают их присутствие в ядре, находится ли клетка в процессе деления или нет. Время от времени, однако, очертания какой-то странного вида хромосомы могут проступить сквозь ядерную оболочку, так что она становится видимой и между делениями; факт этот не только любопытен, но и полезен, поскольку наличие еще одной Х-хромосомы позволяет распознать женскую клетку, подготовленную к микроскопическому исследованию, а такая возможность определить «пол» клетки оказывается неоценимой, когда важно быть уверенным в происхождении клетки или ткани. Кое-какие локомоторные устройства, свойственные простейшим, встречаются и у некоторых клеток более высокоразвитых организмов: из них уже упоминались псевдоподии, а кроме того, имеются жгутики у сперматозоидов и реснички у некоторых эпителиальных клеток, например выстилающих трахею. Строение ресничек и жгутиков в общем сходно — это тончайшие выросты клеточной оболочки, и способ их действия в основном тоже одинаков: самовозбуждающиеся волнообразные сокращения распространяются от основания к концу и вызывают змееобразные движения — такие же, какие возникают у веревки или длинной полоски кожи, если мы попробуем взять ее за конец и, раскачав движением руки*, создадим бегущую по ней волну. Ресничка так коротка, что на ней не может образоваться одновременно больше одной волны, и, поскольку эта волна проходит то по одной ее стороне, то по другой, кажется, будто реснички «хлещут из стороны в сторону», — крайне неточное описание их работы. С молекулярной точки зрения сокращения ресничек, жгутиков и мышечных волокон близки и по своей природе. В многоклеточных организмах реснитчатые клетки часто встречаются в тех местах, где они должны перемещать по поверхности жидкость или слизь — например, в трахее и вообще в дыхательных путях. {147}

Клетки членистоногих лишены ресничек: причина этого, несомненно, связана с тем, что они вырабатывают твердое скелетное вещество, так называемый хитин, из которого формируются плотный наружный покров и внутренние перегородки у насекомых и ракообразных, — ресничек нет даже в тех местах, где они, казалось бы, могли принести значительную пользу, например в дыхательных трубках насекомых, трахеях.

Эпителий и эпителиальные ткани. Если одинаково ориентированные однородные клетки расположены так, что тесно касаются друг друга и между ними не оказывается ни волокон, ни иных клеток, они называются эпителием, когда ограничивают выпуклую поверхность, и эндотелием, когда эта поверхность вогнутая. Однако иногда термин «эпителий» употребляется и в том и в другом случае как общий термин. Так, внешний слой кожи и роговица глаза всегда называются эпителием, а слой клеток, образующий внутреннюю выстилку роговицы, а следовательно, и внутреннюю выстилку передней камеры глаза, — эндотелием. Но особой последовательности тут нет, так как внутреннюю выстилку трахеи и пищевода всегда называют эпителием. Подобная непоследовательность объясняется обычаем и никого с толку не сбивает.

Соединительные ткани. В соединительной и опорной тканях составляющие их клетки — члены обширной семьи фибробластов — отделяются друг от друга межклеточным, или основным, веществом, которое они же сами и вырабатывают. Характерный скелетный продукт соединительных тканей, который связывает и поддерживает большинство органов тела, состоит из плотных неветвящихся волокон, чрезвычайно прочных на разрыв и называемых коллагеновыми волокнами. Они сплетаются в трехмерную ткань исключительной плотности и упругости в той части кожи, дерме, из которой изготовляются кожаные изделия, или слагаются в упругую двумерную структуру, образуя оболочку, которая покрывает, например, печень, почки и кишки, или же коллагеновые волокна могут вытягиваться в одномерную систему, создавая скелетную структуру, сухожилие, с изумительной прочностью на разрыв. Отложения коллагена бывают иногда реакцией на постоянную нагрузку: если, {148} например, в течение долгого времени натягивать нервный ствол, он из-за отложения коллагеновых волокон может превратиться в неплохую имитацию сухожилия. Такое неприятное превращение происходит, если при сшивании концов перерезанного нерва его слишком сильно натягивают.

Кожа. Помимо своих наиболее очевидных механических функций кожа еще и один из органов регуляции температуры тела и важное хранилище жировых отложений: у китов, например, кожный жировой слой может достигать полуметровой толщины. У большинства млекопитающих в коже имеется также мышечный слой, что позволяет им подергивать ею, как это делают собаки, но у людей такие мышцы сохранились только на лице и на шее — они называются мимическими.

Регенерационые возможности кожи, как правило, чрезвычайно преувеличиваются: на деле ее способности в этом отношении очень ограниченны. Особенно это относится к дерме. Утраченная в результате ожога, ссадины, раны или разрушающей инфекции вроде оспы, она заново не образуется, а то пространство, которое она прежде занимала, заполняет губчатая и очень богатая сосудами восстановительная, так называемая грануляционная ткань. При обычном течении событий грануляционная ткань покрывается сверху разрастающимся от краев раны эпителием — эпидермисом, однако она навсегда остается только замещающим органом: на ней не растут волосы, в ней не образуются потовые и сальные железы. Лежащая под эпидермисом грануляционная ткань образует плотные волокна соединительной ткани, но они не обладают характерной трехмерной структурой, как нормальная кожа. Заживление в той мере, в какой оно вообще возможно, происходит путем стягивания, т. е. принудительного сближения краев раны под действием еще не вполне понятных сил; силы эти, во всяком случае, могучи — широко известно, как способны они обезображивать лица и даже калечить, обездвиживая суставы и грубо вмешиваясь в работу мышц. Поэтому рубец от заживления ран выглядит довольно неприглядным, чему есть только одно извинение: силы естественного отбора не очень-то могли способствовать улучшению восстановительного {149} процесса, поскольку в природе животные, получавшие тяжелые раны, почти наверное погибали от бактериальной инфекции.

Поскольку естественный процесс заживления кожи столь неудовлетворителен, можно только радоваться, что современная хирургия сумела в такой степени его улучшить. Хирургическое средство — это пересадка кожи: тонкий слой кожи снимается с какого-нибудь неповрежденного участка и накладывается на участок, который необходимо покрыть. Пересаженная кожа сохраняет строение, характер волосяного покрова и остальные свойства того участка, с которого она была взята, и почти полностью предотвращает стягивание. Это хороший урок людям, которые полагают, что «природа лучше знает». Пересадка кожи — явное улучшение возможностей природы.

На первый взгляд кажется, что при пересадке кожи мы, излечивая одну рану, наносим другую, еще больших размеров, но на самом деле кожа участка-донора снимается до середины ее толщины, так что остается достаточно толстый слой соединительной ткани, чтобы предупредить стягивание и ускорить заживление. Новый поверхностный слой образуется путем разрастания эпителия от основания волос.

Волосы вырабатываются маленькими трубчатыми углублениями кожи, так называемыми волосяными мешочками (фолликулами). Несмотря на отдельные редкие исключения, можно считать общим правилом, что раз утраченные волосяные мешочки не восстанавливаются и число волос на протяжении жизни не увеличивается. Цвет волос, как и цвет окружающего их наружного слоя кожи, определяется деятельностью особых клеток, меланоцитов, которые вырабатывают и откладывают гранулы пигмента. Поскольку меланоциты могут возникать только из предшествовавших им меланоцитов, а не путем образования заново из каких-либо иных клеток, это значит, что в случае, если волосяной мешочек по каким бы то ни было причинам потеряет свой набор меланоцитов (они гораздо более, чем обычные клетки кожи, уязвимы для некоторых видов повреждений, в том числе наносимых излучениями), волос обесцветится и останется таким навсегда. Питание волоса осуществляется через небольшую сеть кровеносных капилляров вокруг {150} волосяного мешочка. Идея, будто можно ускорить рост волос или увеличить их количество путем втирания различных медикаментов в кожу головы, объясняется любопытной и вполне понятной путаницей мыслей, которая возникла под влиянием земледелия: и цветы, и сельскохозяйственные культуры полагается поливать, а их рост молено улучшить путем внесения удобрений, но ведь растения живые, они растут в основном из неорганического футляра почвы и питаются обычно с помощью своих корней, тогда как волосы — это мертвые структуры, вырабатываемые и выталкиваемые живыми органами, волосяными мешочками, которые, как и другие органы, получают питание через кровеносную систему. У человека цветной расы меланоцитов столько же, сколько и у белого, и расположены они на тех же местах, так что меланоциты не могут служить основой якобы существующего между ними анатомического различия: разница заключается лишь в активности этих клеток — меланоциты цветных вырабатывают больше пигмента. Но и при этом воздействие солнечного света может сделать темную кожу еще более темной. А потому люди, предпочитающие относительно более светлый цвет кожи, как правило, стараются избегать воздействия прямых солнечных лучей.

Все столь различные клетки организма являются потомками одной-единственной клетки — оплодотворенного яйца, — которая, следовательно, должна содержать всю генетическую информацию, необходимую для обеспечения правильного их сочетания в сложных тканях. По-французски этот поразительный ряд сложнейших изменений до сих пор называется «эволюцией»; по-английски его теперь называют иначе, и тем не менее вполне понятно, что Герберт Спенсер, излагая эволюционную теорию, поражался нежеланию своих современников рассматривать идею эволюционного происхождения видов, в то время как не менее поразительный процесс, отдаленно сходный с эволюцией, — развитие взрослого организма из одной-единственной клетки — они воспринимали как нечто само собой разумеющееся.

<<< Назад
Вперед >>>
Оглавление статьи/книги

Генерация: 0.856. Запросов К БД/Cache: 3 / 1
Вверх Вниз