Книга: Серебристые облака и их наблюдение

§ 16. Фотометрия, колометрия и поляриметрия серебристых облаков

<<< Назад
Вперед >>>

§ 16. Фотометрия, колометрия и поляриметрия серебристых облаков

Исследование оптических свойств серебристых облаков удобнее всего проводить методами фотографической фотометрии и колориметрии. Колориметрия — это та же фотометрия, но проводимая через светофильтры. Наконец, по фотографиям, снятым через поляроиды, можно проводить поляриметрию. Методика получения и обработки фотографий во всех трех методах одна и та же, поэтому мы будем описывать их параллельно.

Для того чтобы фотографии серебристых облаков были пригодны для фотометрической обработки, они должны быть высокого качества, хорошо проявлены, отфиксированы и промыты. Но этих требований недостаточно. Фотографии, предназначенные для фотометрии, должны быть калиброваны и стандартизованы.

Калибровка фотографий. Чтобы по почернению негатива определить отношение, яркостей объекта в различных точках (или разных объектов), нужно получить соотношение между почернением и освещенностью. Почернение измеряется с помощью микрофотометра по поглощению луча, проходящего в приборе сквозь изображение на негативе и регистрируемого отсчетами на шкале микрофотометра.

Если мы произведем засветки на фотопластинке или плёнке при измерении освещенности в геометрической прогрессии, а затем измерим оптические плотности на микрофотометре, то мы сможем построить характеристическую кривую фотоэмульсии, выражающую соотношение между освещенностью Е и оптической плотностью почернения D (рис. 45).


Рис. 45. Характеристическая кривая фотопластинки.

Характеристическая кривая состоит из нескольких участков. Начальный участок, где кривая идет полого, называется участком или областью недодержек. Следующий участок, где кривая близка к прямой, — это область нормальных выдержек (времени экспозиции). Наконец, верхний участок, где наклон кривой снова уменьшается, — область передержек.

При фотометрии серебристых облаков нужно стремиться к тому, чтобы изображения облаков оказались в области нормальной экспозиции. С другой стороны, при фотографической фотометрии необходимо все снимки делать с одинаковым временем экспозиции. Поэтому, учитывая многолетний опыт наблюдателей, будем делать все снимки (включая калибровочные и стандартизационные) с временем экспозиции 30 секунд. Чувствительность пленок должна быть 90—130 единиц ГОСТ.

Для калибровки можно использовать трубчатый фотометр, подробно описанный в книге «Солнечное затмение 31 июля 1981 года и его наблюдения» (М.: Наука, 1981). Однако в этот фотометр пленку надо заряжать отдельно, что сопряжено с некоторыми неудобствами. Лучше поэтому для калибровки снимков серебристых облаков использовать рекомендуемый О. Б. Васильевым калибровочный фонарь, который нетрудно сделать самому. Устройство его следующее (рис. 46).


Рис. 46. Калибровочный фонарь.

Нужно сделать прочный и светонепроницаемый ящик из толстой многослойной фанера длиной 40 см и сечением 20х26 см. Передняя и задняя крышки его должны быть съемными, но прочно соединяться с корпусом. На задней крышке с внутренней стороны укрепляем несколько электроламп так, чтобы они давали равномерное освещение передней рамки, куда вставляется для проверки равномерности освещения матовое стекло 18х24 см.

Возьмем лист плотной черной бумаги или тонкого картона такого же, как и стекло, формата и вырежем в нем 8 круглых отверстий диаметром 3 см. На каждое отверстие наклеим заранее засвеченные и проявленные кусочки пленки (лучше использовать пленку 6x6 см и слегка обрезать ее по краям). Засветку этих пленок надо сделать с временем экспозиции, возрастающим в геометрической прогрессии: 1, 2, 4, 8, 16, 32, 64, 128 секунд. Чтобы засветки не получились в области передержек, источник света надо подобрать достаточно слабый. Можно использовать для этого тот же фонарь, закрытый одним матовым стеклом, а яркость ламп понизить с помощью реостата, включенного последовательно с фонарем. Пленки вставляются в кассеты, устанавливаемые в нескольких метрах от фонаря, крышка кассеты открывается так, чтобы пленка была обращена эмульсией к фонарю, а фонарь включается выключателем на нужное число секунд. После выключения фонаря закрываем крышку кассеты и ставим на ее место другую и т. д. Работа должна производиться в полной темноте, никаких других источников света, кроме фонаря-осветителя, не должно быть. Лучше всего эту часть работы провести ночью.

После проявления, фиксирования, промывки и просушки засвеченные таким образом пленки надо в свою очередь прокалибровать, так как плотности засветок не пропорциональны времени экспозиции. Сделать это можно с помощью фотоэлектрического фотометра, пропуская свет от стандартного источника сквозь наши пленки и замеряя показания фотометра.

После калибровки (результату которой надо записать в специальную таблицу) пленки, как уже было сказано, наклеиваются на отверстия в листе бумаги или картона, который зажимается между двумя матовыми стеклами 18х24 см, после чего весь этот «слоеный пирог» вставляется в переднюю рамку калибровочного фонаря (только что служившего нам осветителем). Прибор готов.

Добавим еще, что фонарь надо покрасить снаружи черной матовой, а внутри — белой матовой краской.

Фонарь устанавливается в 10–12 м от фотоаппаратов, которыми мы будем вести съемку серебристых облаков, так чтобы он был на 2° выше линии горизонта. Лампы фонаря включаются в сеть или питаются от аккумуляторов. В цепь вводятся реостат, которым можно регулировать яркость ламп, и микроамперметр. Предварительно с помощью движка реостата надо подобрать яркость ламп так, чтобы при фотографировании фонаря самое яркое отверстие уже попадало в область передержек, а самое слабое было недодержано. Эго даст нам гарантию, что область нормальных времен экспозиции будет полностью охвачена изображениями 8 отверстий фонаря.

Фонарь включается за 10 минут до начала съемки серебристых облаков и фотографируется одновременно с ними на тех же кадрах пленки. По окончании работы его выключают. Во время работы надо следить за постоянством силы тока, питающего фонарь. Это делается с помощью микроамперметра и реостата.

Фотометрическая стандартизация. Калибровочная шкала дает нам как бы масштаб шкалы почернений, позволяет перевести отношения плотностей в отношения яркостей. Задача стандартизации — получить нуль-пункт этой шкалы, который позволит нам выразить все яркости в абсолютной шкале. Для этого надо получить на нашей пленке засветку от стандартного источника света, создающего на пленке освещенность, значение которой нам известно.

Таким источником является Солнце. Но свет Солнца очень ярок, и его надо ослабить по крайней мере в миллион раз. Для этого можно использовать рассеивающий или просвечивающий экран. По ряду причин следует предпочесть просвечивающий экран, так как насадку с таким экраном можно направить непосредственно на Солнце, установив ее на тот же аппарат, которым производилась съемка серебристых облаков.

Следуя рекомендациям О. Б. Васильева, можно предложить такое устройство стандартизационной насадки (рис. 47). Она представляет собой трубку, одним концом прочно скрепленную с тубусом объектива фотоаппарата. Внутри трубки поставлен ряд кольцевых диафрагм, предназначенных для того, чтобы отсекать боковые лучи (рассеянный свет неба, отражения от стенок трубки). Кроме того, все внутренние поверхности трубки и диафрагм должны быть выкрашены в черный цвет матовой краской.


Рис. 47. Устройство стандартизационной насадки.

В трубке укрепляются два просвечивающих экрана из молочных стекол: один непосредственно перед объективом аппарата, другой — в 10 см от него, вплотную к первому (считая от открытого конца трубки) экрану ставится малая диафрагма, размер которой мы подберем из опыта.

Внешний экран освещается прямыми лучами Солнца (для этого аппарат с насадкой направляется прямо на Солнце, рис. 48). Освещенный Солнцем, он (точнее, кружок, ограниченный малой диафрагмой) сам становится источником света и освещает внутренний экран. Последний, в свою очередь, посылает свет в объектив фотоаппарата.


Рис. 46. Фотоаппарат со стандартизационной насадкой.

Чтобы привязать оценки яркости серебристых облаков к засветке от экрана, полученной с помощью описанной на садки, надо знать коэффициент ослабления насадки, т. е. отношение создаваемой ею освещенности к освещенности от прямых лучей Солнца. Сделать это можно в лаборатории, измерив коэффициент пропускания каждого из молочных стекол в отдельности, а затем вычислив общий коэффициент ослабления по формуле

K = r1?r2?(s/L2), (48)

где L — расстояние между экранами, s — площадь малой диафрагмы, r1,r2— коэффициенты пропускания обоих экранов.

При отсутствии фотометрической лабораторной установки можно порекомендовать любителю астрономии следующий метод, основанный на сравнении освещенностей от Солнца и от полной Луны. Идея метода заключается в следующем.

Получаем засветку от Солнца при прохождении его лучей через два экрана, как было описано. Затем во время полнолуния делаем засветку от полной Луны, удалив внешний экран и малую диафрагму. Освещенность объектива аппарата в первом случае равна


где

— освещенность поверхности, поставленной перпендикулярно солнечным лучам. Во втором случае освещенность объектива будет равна


где 

— аналогично предыдущему освещенность поверхности, перпендикулярной лунным лучам. Следовательно, коэффициент пропускания первого (внешнего) экрана равен


Поменяв экраны местами и сделав еще такую же пару засветок, найдем r2. Величина 

/
в первом приближении (для средних расстояний Солнца и Луны) равна 1,8?10-8. Однако нам придется учесть еще и отличие реальных расстояний Солнца и Луны от средних и, что самое главное, поглощение их лучей в атмосфере.

Учет первого фактора не представляет никаких трудностей и производится путем применения формул


где величины с индексом «0» соответствуют средним расстояниям, а величины без индекса — реальным, буквой ? обозначены параллаксы Солнца и Луны, приводимые в астрономических ежегодниках и календарях. Вместо отношения параллаксов можно взять отношение радиусов (диаметров) дисков обоих светил. За средние принимаем следующие значения параллаксов и радиусов дисков Солнца и Луны:


Учет атмосферного поглощения требует постановки специальных наблюдений, которые будут описаны ниже. Для того чтобы свести к минимуму возможные ошибки, нужно брать засветки от Солнца и Луны при одинаковой (и как можно большей) высоте обоих светил над горизонтом. Для этого наблюдать надо в полнолуние, приходящееся на весну (вторая половина марта или апрель) или осень (сентябрь — начало октября), ибо в это время склонения Солнца и полной Лупы не очень сильно отличаются друг от друга и можно подобрать моменты, когда каждое из светил будет на заданной высоте, например, 30°. Наблюдаемая освещенность от Солнца (с учетом атмосферного ослабления) будет равна


где р — коэффициент прозрачности атмосферы, определяемый из специальных наблюдений, М(z) — атмосферная масса (отношение масс воздуха, проходимых наклонным и вертикальным лучами), для не очень больших z равная sec z. Методика определения р будет описана ниже.

Яркости, имеющие фотометрическую привязку к засветке, полученной от просвечивающего экрана, освещенного лучами Солнца, будут выражены в так называемых абсолютных солнечных единицах (а. с. е.). Нужно помнить, что 1 а. с. е. = 2?105 стильбов.

Яркость точки поля серебристых облаков в а. с. е. выразится формулой


где К — определенный нами коэффициент ослабления насадки, b — яркость данной точки поля в условной системе единиц калибровочной шкалы, Ьэ — яркость просвечивающего экрана насадки, расположенного перпендикулярно солнечным лучам за пределами земной атмосферы, в той же системе единиц, ?1 и ?2 — параллаксы Солнца в моменты наблюдения Солнца и серебристых облаков соответственно. В этой формуле подразумевается, что и серебристые облака, и засветка от экрана, освещенного Солнцем, фотографировались с одним и тем же временем экспозиции. Для такой стандартной и постоянной при всех фотометрических работах длительности экспозиции рекомендуется выдержка в 30 секунд.

Однако полученная нами засветка от экрана насадки соответствует не яркости а яркости искаженной поглощением солнечных лучей в земной атмосфере. В соответствии с формулой (53) можно написать


Поглощение в атмосфере сильно ослабляет и видимую яркость серебристых облаков. К вопросам определении р и M(z) мы сейчас и перейдем.

Учет ослабления света атмосферой. Хотя выше мы не раз говорили о поглощении света Солнца, серебристых облаков и других светил атмосферой, этот термин, не совсем точен. Свет Солнца не столько поглощается, сколько рассеивается молекулами и атомами атмосферы, иначе говоря, прямой луч света, испытав взаимодействие с молекулой или атомом воздуха, изменяет свое направление и как бы выбывает из состава прямых солнечных лучей. Лучи, испытавшие акт рассеяния (часть лучей рассеивается многократно), формируют рассеянный свет неба — так радующий наш глаз голубой цвет дневного неба, а также все оттенки сумерек. Цвет неба определяется тем свойством рассеяния, что коэффициент рассеяния обратно пропорционален четвертой степени длины волны излучения (закон Рэлея). Поэтому лучи коротких длин волн (фиолетовые, синие, голубые) рассеиваются сильнее, чем более длинноволновые (желтые, оранжевые, красные). По той же причине Солнце, Луна и другие светила у горизонта кажутся красными — красный свет меньше всего рассеивается атмосферой.

Кроме рассеяния, лучи Солнца и других светил испытывают в атмосфере и истинное поглощение; т. е. поглощаются, передавая атому или молекуле свою энергию. Эта энергия расходуется на нагревание, возбуждение, диссоциацию и ионизацию атомов и молекул воздуха, о чем уже было рассказано в § 2. Но роль истинного поглощения в ослаблении потока видимых лучей мала сравнительно с ролью рассеяния. Мы будем говорить об ослаблении света атмосферой, имея в виду суммарное действие обоих процессов и избегая применяемого в науке термина экстинкция.

Состояние атмосферы в данный момент в данном пункте наблюдений характеризуется коэффициентом прозрачности р. Эта величина представляет собой отношение яркости светила, находящегося в зените и наблюдаемого сквозь атмосферу, к яркости того же светила за пределами атмосферы. Казалось бы, определить коэффициент прозрачности невозможно, не производя одновременных замеров яркости светила с поверхности Земли (притом в той ее точке, где это светило находится в зените) и из ближнего космоса. Однако это не так, и определять величину р можно за несколько часов наблюдений с данного места, причем наблюдать светило выгоднее не в зените, а на небольших высотах. Дело в том, что согласно закону Бугера ослабление света, идущего под углом z к вертикальному направлению, равно

Tz = psec z (56)

Закон Бугера справедлив для не слишком больших z, а именно, для z =< 75°. Для больших z мы должны в формуле (56) писать уже не sec z, а М(z), где М(z) называется относительной воздушной массой, или функцией Бемпорада.

Существуют таблицы М(z) для больших z[8], однако они вычислены для так называемой средней атмосферы, а истинные М(z) сильно зависят от состояния атмосферы в данном месте и в данный момент (от ее температуры, запыленности и т. д.). Поэтому лучше определять М(z) непосредственно из наблюдений. Техника этих наблюдений такова.

Во вторую половину дня, предшествующего ночи наблюдений, направляем нашу стандартизационную насадку на Солнце и каждые 15 минут делаем засветку на пленке со стандартным временем экспозиции 30 секунд. Эти наблюдения продолжаются до самого захода Солнца, пока виден весь солнечный диск. Если ночью наблюдались серебристые облака, то утром наблюдения прозрачности атмосферы повторяются от восхода Солнца до полудня (ближе к полудню наблюдения можно производить реже, раз в полчаса).

Понятно, что такая нагрузка не под силу одному наблюдателю. Чтобы успешно работать, наблюдатель должен быть бодрым, а для этого надо хорошо высыпаться. Поэтому фотометрические наблюдения должны производиться двумя группами наблюдателей. Группа № 1 («совы») наблюдает с вечера до утра (или до исчезновения серебристых облаков), после чего ложится спать. Группа № 2 («жаворонки») ведет наблюдения атмосферной прозрачности днем до вечера, а затем идет спать до восхода Солнца, после чего проводит второй цикл наблюдений прозрачности — от восхода Солнца до полудня (можно закончить его и раньше). Чтобы каждый смог понаблюдать серебристые облака, «совы» и «жаворонки» через сутки могут меняться ролями.

Рассмотрим теперь порядок обработки полученного ряда наблюдений. Все засветки проверяем на микрофотометре и выражаем в системе единиц калибровочной шкалы. Не следует забывать, что каждая пленка с засветками от стандартизационной насадки должна быть прокалибрована, т. е. в нее следует с ночью впечатать изображения калибровочного фонаря. Если есть трубчатый фотометр, можно прокалибровать пленку и днем, используя Солнце в качестве осветителя. Поскольку и здесь время экспозиции должно быть равно 20 секундам, внешние отверстия фотомера следует прикрыть толстым молочным стеклом. Если применяются два разных калибровочных устройства, их шкалы надо привязать друг к другу по засветкам на одной и той же пленке обеих шкал.

Возьмем теперь формулу (53), подставим в нее 

из формулы (52) и прологарифмируем. Вместо
0 для краткости будем писать E0. Получим


Нанесем теперь все точки на график, откладывая но оси абсцисс значении М(z), а по оси ординат — значения (lg Eu С), где


Большинство точек для z =< 75° на прямую (рис. 49), тангенс угла которой к оси абсцисс будет равен lg p. проведя эту прямую до пересечения с осью ординат, найдем на ней значение С, а по формуле (58) lg E0.


Рис. 49. Бугеровский график.

Для того, чтобы определить и нанести на график значения М(z), нужно будет вычислить значение расстояния Солнца для всех моментов наблюдений. Это делается по известной формуле


где ? — широта места, ? — склонение Солнца, t — его часовой угол; значение t в градусах равно

t = 15?(TT0), (60)

где Т — момент наблюдения в часах, Т0 — момент истинного полудня (верхней кульминации Солнца). Этот момент в свою очередь равен

T0 = 12ч + (?0?) + ?, (61)

где ? — долгота места в единицах времени, ?0 — долгота центрального меридиана пояса, по которому ведется счет времени в месте наблюдении, ? — поправка на приведение среднего времени к истинному, равная уравнению времени, которое приводится в таблицах эфемерид Солнца в «Астрономическом календаре» на каждый год. Из тех же таблиц берем и ?. Значение ?0 берем, исходя из следующих соображений. Поскольку период наблюдений серебристых облаков приходится на период действия в нашей стране летнего времени, то ?0 = 4 часа + ?Т, где ?Т — разность местного декретного времени с московским, а 4 часа — разность московского летнего времени с всемирным.

Исправлять за ослабление света в атмосфере нужно и яркость самих серебристых облаков. Так как они наблюдаются, как правило, при z > 75°, при учете ослабления их света в атмосфере нельзя принимать M(z) = sec z, а надо использовать значения M(z), полученные из описанных выше наблюдений Солнца в ближайший вечер или утро.

Переход от наблюденной яркости серебристых облаков к исправленной за атмосферное ослабление производится по формуле

B0 = Bн?p-M(z(62)

Для определения таких характеристик серебристых облаков, как альбедо, нужно учитывать еще и атмосферное ослабление лучей Солнца, освещающих серебристые облака (см. § 5, формула (12)). Если величина Т2, в этой формуле нам теперь известна из наблюдений Солнца и равна

Т2 = pM(z), (63)

то стоящая в той же формуле величина Т? (прозрачность атмосферы на пути Солнце — облако) не может быть определена непосредственно из наблюдений и ее нужно уметь рассчитывать.

Световой поток, идущий от Солнца и освещающий серебристые облака, испытывает ослабление не только вследствие рассеяния и поглощения, но и вследствие рефракционного расхождения лучей. Это явление связано с тем, что чем ниже в земной атмосфере проходит луч, тем сильнее он преломляется (рис. 50), и сечение пучка лучей dS расширяется, превращаясь в dS '> dS. Соответственно убывает поток излучения, приходящийся на единицу поверхности, перпендикулярной пучку, т. е. освещенность.


Рис. 50. Схема рефракционного ослабления луча, проходящего через атмосферу Земли.

Нетрудно показать, что отношение освещенности при отсутствии рефракции Е к освещенности Е', искаженной рефракцией, равно[9]


где H* — шкала высот (см. формулу (2) на с. 16), L — расстояние ВС на рис. 18, равное


а угол ?1 определяется формулой (5), § 3; ? — это удвоенный угол рефракции, величина которого зависит от значения минимальной высоты Н0, которой достигает освещающий серебристое облако луч Солнца. Эта высота определяется по формуле


Значения угла б в функции Н0 приведены в Приложении 6.

Нам осталось учесть ослабление освещающего солнечного луча за счет рассеяния и поглощения в атмосфере на пути «Солнце — облако», и мы получим следующее выражение для Т1:


Значения М?00) — воздушной массы, проходимой лучом на минимальной высоте Н0 при z = 90°, приведены в Приложении 6. Кроме того, ее можно рассчитать по формуле Лапласа


где Р — давление на высоте Н0 в миллибарах, Т — температура на той же высоте в градусах абсолютной шкалы Кельвина.

Теперь мы имеем все необходимые величины для учета атмосферного ослабления как света Солнца, к которому мы привязываем с помощью стандартизации яркость серебристых облаков, так и света самих серебристых облаков, а также освещающих их лучей Солнца. Порядок вычислений будем применять следующий:

1) Из обработки лабораторных экспериментов по формулам (51) и (48) определяем раз и навсегда коэффициент пропускания насадки К.

2) Из ряда наблюдений Солнца со стандартизационной

насадкой по формулам (57) и (58) строим бугеровский график и определяем прозрачность атмосферы p. Этот же график послужит нам для определения значений M(z) для больших z.

3) По формулам (54) и (55) получаем для каждого отсчета микрофотометра, переведенного в относительные яркости Ь, видимые абсолютные яркости серебристых облаков Вн.

4) По формуле (62) находим истинные яркости серебристых облаков В0.

5) По формулам (63), (67) и (12) вычисляем видимое альбедо серебристых облаков Ан.

Входящие в эти формулы вспомогательные величины находим по другим формулам этого параграфа.

Обращаем внимание читателей на то, что величина M(z) в формулах (53), (55), (57) — это атмосферная масса на пути луча Солнца, фотографируемого нашей насадкой, а в формулах (62) и (63) эта величина соответствует атмосферной массе на пути луча «серебристое облако — наблюдатель», поэтому в эти формулы надо подставлять M(z), соответствующее зенитному расстоянию Солнца в первом случае и серебристых облаков во втором.

Колориметрические наблюдения. Научившись производить фотометрию серебристых облаков по их фотографиям, мы можем перейти к более сложному виду наблюдений — фотографической колориметрии. Вся методика работы остается прежней, но фотографирование ведется одновременно тремя фотоаппаратами, установленными так, чтобы их оптические оси были параллельны друг другу. На объективы аппаратов ставятся три светофильтра, по возможности с узкой полосой пропускания (не более 300 А°), с максимумами чувствительности в синей, желто-зеленой и красной областях спектра. Нужно, чтобы применяемая фотопленка была достаточно чувствительна во всех этих областях спектра, поэтому следует применять пленку типа изохром или изопанхром.

Как уже было сказано, экспозиции на всех трех аппаратах производятся одновременно, для чего применяется устройство, изображенное на рис. 38.

Калибровка каждой пленки производится, как и при одноцветной фотометрии, по изображениям Отверстий калибровочного фонаря. Для каждого цвета строится отдельная характеристическая кривая.

Стандартизация снимков для каждого цвета производится отдельно, одной насадкой, но с заменой светофильтров. Это значительно усложняет работу, так как для замены светофильтров насадку надо каждый раз снимать, а потом снова устанавливать. От этого можно избавиться, изготовив три отдельные насадки. В этом случае можно стандартизационные экспозиции производить одновременно тем же устройством. Но тогда нужно произвести фотометрическую привязку всех трех насадок друг к другу. Для этого надо снять светофильтры с аппаратов и получить засветки от Солнца одновременно тремя насадками, а затем произвести их фотометрическое сравнение, хотя бы в относительных единицах. В случае использования трех насадок их надо «закрепить» за аппаратами, т. е. ставить всегда насадку № 1 на аппарат № 1 и т. д. Это нужно еще и потому, что фотоаппараты могут слегка отличаться друг от друга (по фокусному расстоянию, относительному отверстию и т. д.) и описанное выше фотометрическое сравнение будет сделано для постоянно используемых комбинаций «аппарат + наладка».

После получения результатов, т. е. видимых яркостей серебристых облаков в трех областях спектра, можно определить их специальные показатели цвета в звездных величинах, как это принято в астрономии. Для этого рассчитаем величины


и образуем разности m1m2 и m2m3. Это и будут специальные показатели цвета. Индекс «1» здесь относится к красным лучам, «2» — к желто-зеленым, «3» — к синим. Если специальные показатели цвета положительны, значит, свет серебристых облаков краснее света Солнца, если отрицательны — то голубее.

Многие любители астрономии не раз получали цветные Фотографии серебристых облаков, чаще всего на обратимой пленке для применения их в качестве слайдов. Получают цветные снимки и на фотобумаге. Однако такие снимки имеют лишь чисто иллюстративное значение, хотя порой и очень красивы. Научная обработка цветных фотографий пока еще не освоена, ибо при этом значительно усложняется процесс и методика калибровки снимков (нужно получить не только яркостную, но и цветовую шкалу), а также их лабораторной обработки.

Поляриметрия серебристых облаков. Поляриметрия по методике во многом напоминает колориметрию, только вместо цветных светофильтров на объективы фотоаппаратов ставятся анализаторы, в качестве которых могут быть использованы выпускаемые нашей промышленностью и имеющиеся в продаже поляризационные светофильтры (поляроиды). На первый аппарат поляроид ставится так, чтобы плоскость его поляризации была вертикальна; плоскости поляризации поляроидов на втором и третьем аппарате должны быть наклонены на угол 60° в противоположные стороны (рис. 51). Экспозиции производятся одновременно на всех трех аппаратах.


Рис. 51. Схема расположения поляроидов на трех аппаратах.

Нужно помнить, что малейшее различие в пропускании оптики фотоаппаратов может привести к появлению ложной поляризации. То же самое может получиться при различии в чувствительности фотопленок или в режиме их проявления. Чтобы избежать этого, нужно всеми тремя аппаратами снимать миру, в качестве которой можно использовать калибровочный фонарь. Свет миры должен быть обязательно естественным, поэтому перед работой нужно проверить, не создает ли просвечивающий экран миры поляризации. Для этого нужно фотографировать миру одним аппаратом при трех положениях поляроида, с поворотом на 60°. Главное здесь — соблюдение равенства экспозиций. Если при трех положениях поляроида засветки от миры будут совершенно одинаковой плотности, ее свет естественный.

Пусть яркости миры (при использовании калибровочного фонаря измеряется яркость отверстия, дающего засветку средней плотности) на каждом из трех снимков с поляроидами равны В1, B2, В3. Пусть далее имеет место следующее соотношение между ними:

k1?B1k2?B2 = B3 (70)

Коэффициенты k1, k2 мало отличающиеся от единицы, определяются из снимков миры, после чего все яркости, полученные по фотографиям с первым аппаратом, умножаются на k1, а со вторым аппаратом — на k2.

Из яркости серебристых облаков вычитается яркость прилегающих участков сумеречного неба. Только после этого мы получим истинную яркость серебристых облаков. Пусть для трех аппаратов эти яркости будут I1, I2, I3, (мы не используем здесь букву В, чтобы не спутать яркость серебристых облаков с яркостями миры). Степень поляризации p и угол положения плоскости поляризации ср определяются по формулам В. Г. Фесекова:


где ?1 — угол положения плоскости пропускания поляроида на первом аппарате (если она вертикальна, как на рис. 50, то ?1 = 0).

Для измерений поляризации выбирают наиболее характерные детали серебристых облаков, легко отождествимые на всех трех снимках. Сдвиг измеряемой точки на одном снимке по отношению к другому может привести к появлению ложной поляризации или к искажению результата.

Значения степени поляризации р интересно нанести на график в функции угла рассеяния ?, который равен

? = h

 (73)

где h — высота точки поля серебристых облаков, 

— высота Солнца (
 < 0). Такой график р(?) может быть использован для заключения о размерах частиц, из которых состоят серебристые облака.

<<< Назад
Вперед >>>

Генерация: 4.922. Запросов К БД/Cache: 3 / 1
Вверх Вниз