Книга: Биологически активные
Ужасающий конец несчастного Стэнли
<<< Назад Будучи связанными |
Вперед >>> О белках |
Ужасающий конец несчастного Стэнли
Еще раз не поленимся вспомнить принцип Эрлиха: «Вещества не действуют, не будучи связаны». За счет каких физических сил они могут связываться, – мы уже рассмотрели, теперь вопрос: а с чем?
Сам Эрлих, если вспомнить приведенные цитаты, говорил довольно туманно о каких-то веществах протоплазмы, о рецепторах. Что это, кстати, такое? И почему, связавшись, неважно пока, с чем, вещества эти оказывают какое-то действие?
Для иллюстраций существенных из начальных понятий обратимся к истории применения гербицидов: «химической прополки», как говаривали раньше. Одним из первых эффективных средств, помогавших избавиться от сорняков в посевах злаковых культур, были вещества, совершенно немудреные: серная кислота и медный купорос. Серная кислота – средство, конечно, радикальное. Нет такой живой ткани, нет такого организма, который мог бы противостоять контакту с ней. Но почему же сорняк звездчатка опрыскивания 20-процентной серной кислотой не переносит, а пшенице как с гуся вода?
А вот именно, именно, как с гуся вода. Плотные, лощеные листья пшеницы, покрытые тончайшим (гидрофобным!) восковым налетом, не позволяют задерживаться капелькам серной кислоты, они скатываются прочь, в почву. У звездчатки же поверхность листьев морщинистая, негладкая, к тому же хорошо смачиваемая. Несколько капель всесокрушающей H2SO4 на растение – и достаточно.
Вот уж действительно: не действуют вещества, не будучи связанными! А с другой стороны, на этом примере мы можем ввести в обиход нашего правдивого (по преимуществу) повествования важное понятие избирательности действия. В рассмотренном случае она проявляется на организменном уровне. Если бы серная кислота все же как-то задержалась и на листьях пшеницы, той бы тоже, конечно, несдобровать. Но пшеница увернулась. Невольно вспоминается полузабытая ныне пословица: «Что русскому здорово, то немцу...» Я, впрочем, наблюдал и обратное: почтенного, симпатичного русского профессора, у которого разыгрался неприятнейший гастрит после двухнедельного знакомства с немецкой кухней; так что пусть редактор не пытается вычеркнуть этот абзац, приписывая мне великорусский шовинизм.
Еще одна особенность действия серной кислоты на злополучную звездчатку: кислота уничтожает все клеточные структуры без разбору, разрушает все живое вещество клетки целиком. Гораздо больший интерес представляют соединения, действующие избирательно не только на уровне организма, но и внутри него, связываясь лишь с некоторыми, вполне определенными его элементами.
«...Стэнли, крайне польщенный этим визитом, суетился возле бара. Вскоре на столе появился поднос с двумя стаканами.
– Что предпочтете?
– Немного виски, – свободно ответила Айрис. И, выждав, пока Стэнли нальет, добавила: – Если можно, дайте льда.
Стэнли услужливо метнулся на кухню. Едва он скрылся за дверью, в руках Айрис появилась миниатюрная стеклянная капсула. Ее содержимое, всего несколько беловатых крупинок, она быстрым движением всыпала в стакан – тот, что стоял подальше от нее.
...Инспектор Мак-Гроу низко наклонился над лицом покойника. Так и есть–характерный запах горького миндаля».
Ну а раз горького миндаля, всякий знаток детективных историй тут же и сообразит, что те несколько беловатых крупинок, которые всыпала в стакан Стэнли коварная и аморальная Айрис, были не чем иным, как цианистым калием. Ладно, не подлежит сомнению, что инспектор Мак-Гроу дело свое знает, и не миновать в конце концов мерзавке газовой камеры или электростула. Лучше поинтересуемся: с чем же именно связался в организме злополучного растяпы Стэнли этот самый цианистый калий?
Ну, прежде всего не так уж обязательно именно калий. Дело в том, что все цианиды щелочных металлов в растворе диссоциируют на ион металла и анион CN– эти растворы имеют основную реакцию (то же KOH–очень сильная щелочь) поэтому часть анионов CN–, отнимая протон у молекулы воды, превращается в синильную кислоту – соединение довольно летучее. Именно запах синильной кислоты и почувствовал инспектор Мак-Гроу, а был ли в роковой капсуле цианид калия или, скажем, натрия, этого, пожалуй, уже не установить.
При попадании в организм животных синильной кислоты или ее солей образующийся ион CN– связывается с гемоглобином – красным веществом крови, обеспечивающим перенос кислорода из легких к остальным органам. Кислород обратимо связывается атомом железа, встроенным в так называемое порфириновое ядро – молекулу довольно сложной структуры, присоединенную к белковой части гемоглобина. Ион CN– образует с тем же атомом железа более прочное соединение, возникший в результате циангемоглобин уже не способен переносить кислород. Ясно, что последствия этого оказываются самыми печальными: удушье вследствие кислородного голодания.
Случай с цианистым калием демонстрирует нам первый пример как бы мимикрии на молекулярном уровне: явления, весьма важного для понимания механизмов химического воздействия на биологические объекты. В данном случае ион CN– как бы прикинулся кислородом, занял его место. Таким именно образом действуют многие вещества: имея сходство в химическом и структурном отношении с соединениями, участвующими в нормальном обмене веществ организма, они вовлекаются вместо них в соответствующие реакции.
Результаты могут быть разными, но это уже отдельный вопрос.
Далее, а как обстоит дело с избирательностью действия цианистого калия на организменном уровне? Ведь гемоглобин содержится только в крови позвоночных. Означает ли это, что, скажем, для насекомых, растений, микроорганизмов он безвреден? Нет, не означает.
Во-первых, в организме беспозвоночных функцию, присущую гемоглобину, – транспорт кислорода, – выполняют другие, весьма сходные с ним дыхательные белки – эритрокруорины. Они содержат ту же порфириновую группу с атомом железа, совершенно аналогично функционируют и так же, как гемоглобин, необратимо связывают ион CN–.
Во-вторых, такую же группу содержат и многие другие белки, не имеющие отношения к функции переноса кислорода, но очень важные для нормального течения различных обменных процессов в организме: цитохромы, каталазы и т.п. Представители белков этой группы присутствуют практически во всех организмах, кроме разве что вирусов; таким образом, цианистый калий – яд довольно универсальный, истребляющий, как и серная кислота, все (ну, почти все) живое.
Почти – потому, что есть организмы, безразличные к поразительно высоким концентрациям цианидов... Эпиграфом к заключительной главе одной весьма специальной книги, посвященной ядам животных, взято высказывание американского физиолога К. Шмидт-Нильсена:
«Один из способов быть. несъеденным – это стать несъедобным». Очень многими способами реализуется этот полезный совет представителями и растительного и животного царства. Чертополох угрожающе растопыривает свои колючки, полынь имеет омерзительно горький вкус, горькой же слизью покрыто тело жаб, а у некоторых она еще к тому же ядовита.
Именно ядовитость, пожалуй, самая распространенная причина несъедобности. Километрами бредет иной грибник по лесу, не находя решительно ничего, что можно было положить в корзину, и с раздражением поглядывает на огромные скопления ложного опенка, попадающиеся буквально на каждом шагу, на самодовольных красавцев мухоморов. Все другие, съедобные, не уцелели. Впрочем, некоторые знатоки утверждают, что по-настоящему несъедобных грибов очень немного, а большинство тех, мимо которых грибники проходят равнодушно или даже с омерзением, после соответствующей обработки можно есть за милую душу.
Есть и обратные примеры. В Японии большим деликатесом считается рыба фугу, хотя совершенно доподлинно известно, что в ее коже и некоторых внутренностях содержится страшный яд – тетродотоксин. Ежегодно десятки людей гибнут от отравления фугу, есть у японцев и назидательная пословица о лакомках, погибших из-за своего порока, отравившись фугу. А это может случиться в результате маленькой небрежности при разделке, а иногда и вообще неизвестно почему: просто попался особо ядовитый экземпляр, или время было неподходящее (фугу особенно ядовита в первой половине лета). Трудно понять такое легкомыслие со стороны рассудительных, по нашим представлениям, японцев. А, впрочем, много ли наших курильщиков принимает близко к сердцу отпугивающие статистические данные о горестной судьбе приверженцев никотина?
Вернемся, однако, к нашим цианидам. Некоторые ядовитые растения ядовиты именно благодаря тому, что в их тканях образуются и накапливаются цианиды. Это их способ защиты от поедания травоядными животными, насекомыми и поражения микроорганизмами. Но если в отношении насекомых такая защита оказывается стопроцентно эффективной, то среди микроорганизмов нашлись обладатели особых ферментных систем, быстро разрушающих цианиды, благодаря чему и могут беспрепятственно развиваться на субстрате, ядовитом для всех прочих растений.
Любопытно, что пути обезвреживания цианида бывают самими разнообразными. Грибки рода фузариум, паразитирующие на культурных растениях семейства пасленовых (картофель, помидоры и др.), превращают зловещий HCN в безвредные аммиак и углекислоту; другие грибки, вызывающие заболевания тех же культур, окисляют его до альдегидов. Чаще всего цианиды обезвреживаются, вовлекаясь в реакцию с аминокислотами.
Обычно цианиды образуются в растениях в результате деградации некоторых гликозидов или алкалоидов (их так и называют – цианогенными). Содержание накапливающейся таким образом синильной кислоты в некоторых растениях очень велико. Так, новозеландские ученые исследовали с этой точки зрения разные разновидности белого клевера. Оказалось, что у отдельных форм в килограмме свежей травы содержится более ста миллиграммов HCN. Смертельной дозой для овцы являлись всего 320 граммов такой травы или 60 граммов полученного из нее сена!
Еще большее содержание синильной кислоты было обнаружено в некоторых сортах сорго – до полуграмма в килограмме зеленой массы; очень богаты цианидами и клубни тропического культурного растения кассавы. Содержащийся в клубнях растений кассавы цианогенный алкалоид линамарин подвергается распаду с образованием HCN; любопытно, что в устойчивом к синильной кислоте грибке ризопус, поражающем клубни кассавы, содержится фермент, катализирующий этот процесс. Другой фермент разлагает выделяющийся цианид.
Индийские ученые, изучавшие этот грибок, пришли к выводу, что препарат второго фермента можно использовать для детоксикации кормовых и пищевых продуктов из кассавы, а кроме того, для очистки стоков, содержащих остатки солей синильной кислоты. Аналогичную идею выдвинула группа английских микробиологов, исследовавших другую группу цианотолерантных микроорганизмов. Такие стоки в больших объемах имеются, например, на гальванических производствах, и их обезвреживание, естественно, доставляет массу хлопот: требуется очень высокая степень очистки.
<<< Назад Будучи связанными |
Вперед >>> О белках |
- Будучи связанными
- Глава 2. Почему они биологически активные
- Когда я впервые начал чувствовать?
- Четыре волны богатства
- Мы и насекомые
- III. Если летишь в звездолете со скоростью, близкой к скорости света, какие ужасы ждут тебя по возвращении?
- По инерции
- Как чувствует наш мозг
- Трагическая история Армении
- Миф № 44 При браках между «далекими» расами не получается потомства! Поэтому расы – это разные виды!
- Рыбы, плотины и человек
- ГЛАВА 8 Чувство равновесия