Книга: Энергия, секс, самоубийство

Свободные радикалы подают сигнал

<<< Назад
Вперед >>>

Свободные радикалы подают сигнал

В части 3 мы уже обсуждали утечку свободных радикалов из дыхательной цепи. Как ни парадоксально, скорость утечки не соответствует скорости дыхания, как можно было бы ожидать, а зависит от наличия электронов (источником которых, по большому счету, является пища) и кислорода. Поскольку эти факторы постоянно колеблются, колеблется и число свободных радикалов. Внезапные вспышки образования свободных радикалов могут влиять на поведение клетки.

Если клетка быстро растет и делится, электроны быстро текут по дыхательной цепи, значит, ей нужно много пищи. Тогда утечка свободных радикалов относительно невелика. Дело в том, что они, как правило, переходят по линии наименьшего сопротивления от одного акцептора электронов к следующему и так до кислорода. Блэкстоун сравнивает такую дыхательную цепь с изолированным проводом. Предположим, быстрый рост и обильная пища означают, что утечка свободных радикалов невелика.

Что происходит при голодании? Теперь «топлива» меньше, и электронов в дыхательной цепи почти нет. Кислорода может быть много, но свободные радикалы не образуются, так как нет свободных электронов. Если сравнивать дыхательные цепи с электрическими проводами, то голод означает нарушение электропитания: если питания в сети нет, вас не ударит током. Утечка свободных радикалов невелика, потому что потока электронов нет вообще.

Но подумайте, что произойдет при повреждении клетки. Топлива у нее достаточно, но делиться она больше не может. Митохондрии в ловушке. Нет деления, нет и спроса на АТФ, и его запасы в клетке остаются большими. Скорость потока электронов по цепи зависит от скорости потребления АТФ. Если она высокая, то электроны текут быстро, словно их засасывает пылесос; но если потребления нет, то дыхательная цепь забивается свободными электронами, которым некуда деваться. Теперь достаточно и кислорода, и свободных электронов. Скорость утечки свободных радикалов значительно выше. Дыхательная цепь ведет себя как провод с поврежденной изоляцией, а такой провод опасен. Поврежденные клетки, которые не растут и не делятся, несмотря на обилие пищи, получают от своих митохондрий удар током — внезапный выброс свободных радикалов[62].

Любой выброс свободных радикалов приводит к окислению липидов митохондриальных мембран и высвобождению цитохрома с в межмембранное пространство. Это, в свою очередь, полностью блокирует поток электронов по цепи, так как цитохром с является ее неотъемлемой частью. Удалить из цепи цитохром с — все равно что перерезать провод под напряжением. Первая часть цепи задыхается от избытка электронов, и в ней продолжается утечка свободных радикалов; так, оставшаяся под напряжением часть перерезанного провода может ударить током. Но в результате остановки потока электронов мембранный потенциал постепенно рассеивается (так как утечка протонов больше не компенсируется их закачкой). По мере нарастания стресса поры в наружной митохондриальной мембране открываются, и апоптотические белки, включая цитохром с, выходят в цитозоль. Иными словами, эти обстоятельства стимулируют первые этапы апоптоза.

Какой из этого можно сделать вывод? Интересы митохондрии и клеток, в которых они находятся, в большинстве случаев совпадают. Если и те и другие размножаются, все хорошо. Клетка находится в восстановленном (то есть не окисленном) состоянии, но утечка свободных радикалов минимальна. Напротив, если ресурсов мало, никто из участников не может размножаться, и клетка старается повысить устойчивость, чтобы дожить до лучших времен. Она теперь находится в окисленном состоянии, и утечка свободных радикалов снова минимальна. А вот когда клетка-хозяин повреждена и не может делиться, несмотря на обилие пищи, митохондрии сигнализируют о своем недовольстве выбросом свободных радикалов. Принципиально важно, говорит Блэкстоун, что свободные радикалы атакуют ДНК в ядре клетки (а выброс цитохрома с в цитозоль способствует образованию свободных радикалов). У дрожжей и других примитивных эукариот повреждение ДНК служит сигналом к половой рекомбинации. Что еще удивительнее, у примитивной многоклеточной водоросли Volvox carteri (под микроскопом она выглядит как светящийся зеленый шар необычайной красоты) двукратное повышение уровня образования свободных радикалов активирует половые гены, приводя к образованию новых половых клеток (гамет). Важно, что этот эффект можно вызвать, блокировав дыхательную цепь. Итак, теорию Блэкстоуна можно подкрепить конкретными примерами. Суть в том, что первые этапы апоптоза в одиночных клетках когда-то могли стимулировать не смерть, а половой процесс.

<<< Назад
Вперед >>>

Генерация: 0.564. Запросов К БД/Cache: 0 / 3
Вверх Вниз