Книга: От атомов к древу. Введение в современную науку о жизни
Кислоты versus основания
<<< Назад Мир кислот |
Вперед >>> Углеродный шовинизм |
Кислоты versus основания
А теперь нам самое время задаться вопросом, что такое кислота. И заодно — что такое основание.
Начнем с кислоты. Как правило, кислотой называют молекулу, которая в водном растворе диссоциирует (это высоконаучный термин, означающий «распадается») на катион водорода, то есть протон (H+), и некий анион. Например, уксусная кислота (CH3COOH) распадается в водном растворе на протон и ацетат-ион, имеющий формулу CH3COO?. Так же ведут себя и все остальные карбоновые кислоты. И не только карбоновые, но и любые другие. Например, соляная кислота (HСl) потому и называется кислотой, что распадается в воде на протон (H+) и ион хлора (Cl?). Правда, на самом-то деле протон не способен самостоятельно существовать в водном растворе — он всегда мгновенно захватывается водой, образуя так называемый ион гидроксония (H3O+). Концентрацию именно этих ионов реально измеряют при определении кислотности раствора.
Шведский химик Сванте Аррениус определял кислоту как соединение, диссоциирующее в водном растворе с образованием протона (H+), а основание — как соединение, диссоциирующее в водном растворе с образованием гидроксил-иона (OH?). Это определение — исторически первое и до сих пор самое известное, именно его обычно учат на уроках химии в школе. Хороший пример основания по Аррениусу — едкий натр NaOH, он же гидроксид натрия или просто натриевая щелочь. Это типичное ионное соединение. Даже в твердом состоянии натриевая щелочь состоит из ионов [Na+] и [OH?], а в воде она на эти ионы тут же распадается.
Теперь — плохая новость. В биохимии определение кислот и оснований по Аррениусу совершенно неприменимо. Вместо него мы будем пользоваться определением датского химика Йоханнеса Николауса Брёнстеда: кислота — молекула, отдающая протон, основание — молекула, принимающая протон.
Что это значит? Пусть, например, у нас взаимодействуют уксусная кислота и вода. В процессе взаимодействия от уксусной кислоты (CH3COOH) оторвется протон (H+), который перейдет к воде (H2O). В результате получатся анион CH3COO? и катион H3O+. В этой реакции уксусная кислота «работает» кислотой (она отдала протон), а вода — основанием (она присоединила протон). Это и есть определение Брёнстеда. Запись этой реакции будет такой:
CH3COOH + H2O ? CH3COO? + H3O+
А если для простоты проигнорировать участие воды, то такой:
CH3COOH ? CH3COO? + H+
По Брёнстеду, «кислота» или «основание» — это не постоянное свойство соединения, а только и исключительно его роль в данной химической реакции. В принципе даже уксусная кислота может оказаться в «непривычной» для себя роли основания, если смешать ее с какой-нибудь более сильной кислотой — например, серной (H2SO4). В этом случае серная кислота отдаст протон и превратится в анион HSO4?, а уксусная кислота присоединит протон и превратится в довольно редкий, однако вполне реально существующий катион CH3COOH2+:
CH3COOH + H2SO4 ? HSO4? + CH3COOH2+
И, по нашему определению, уксусная кислота в этой реакции будет основанием.
К счастью, условия, с которыми приходится иметь дело в биологии, настолько однотипны, что для подавляющего большинства веществ смена ролей кислот и оснований там редкость. Так что мы можем смело считать кислотой любую молекулу, которая в условиях живой клетки обычно отдает протон, а основанием — любую молекулу, которая в условиях живой клетки обычно его присоединяет. Единственное важное исключение — вода. Она примерно с одинаковым успехом может и отдавать протон, и присоединять его. Для всех остальных веществ «роли» кислот и оснований тут более-менее постоянны.
Одно из самых распространенных в природе оснований — гидроксил-ион OH?, тот самый, который образуется при диссоциации щелочи. Он очень легко присоединяет к себе протон и превращается в воду. Но с тем же успехом в составе основания может и не быть атомов кислорода. Например, аммиак (NH3) — образцовое основание, никакого кислорода не содержащее. В растворе молекула аммиака присоединяет к себе протон и превращается в катион аммония (NH4+). Кстати, этот ион очень похож по структуре на молекулу метана (CH4). Различаются они только зарядом ядра центрального атома.
А теперь вернемся к органической химии. Соединения углерода, в которых есть группа ?NH2, называются аминами. Общая формула аминов: R?NH2. Сама группа ?NH2 называется аминогруппой. При желании вполне можно сказать, что амин — это аммиак, у которого вместо одного из атомов водорода углеводородная цепочка. Аминогруппа в составе амина сохраняет основные свойства (такие же, как у аммиака), поэтому амины остаются полноценными основаниями. Самый простой из всех возможных аминов — метиламин (CH3?NH2), где атом углерода всего один. Как и следует из названия, он состоит из двух групп: метильной и аминогруппы. Между прочим, это то самое вещество, с кражами которого был связан ряд приключений героев захватывающего сериала «Во все тяжкие» (Breaking Bad).
Что ж, двинемся еще на шаг вперед. Любое вещество, включающее одновременно аминогруппу (?NH2) и карбоксильную группу (?COOH), то есть являющееся одновременно амином и карбоновой кислотой, называется аминокислотой. Вот мы и добрались до насущного хлеба биохимиков. Роль аминокислот в живых организмах огромна: они служат и питательными веществами, и промежуточными продуктами обмена веществ, и — это, пожалуй, самое главное — «кирпичиками», из которых строятся важнейшие для земной жизни молекулы, а именно белки. Как именно это происходит, мы узнаем в главе 3.
Любая аминокислота проявляет одновременно кислотные свойства (как карбоновая кислота) и основные (как амин). Когда аминокислота попадает в водный раствор, ее карбоксильная группа обычно теряет протон, зато аминогруппа в тот же самый момент протон приобретает. В результате получается цвиттер-ион — нейтральная молекула, разные части которой несут компенсирующие друг друга разноименные заряды. Карбоксильная группа, отдав протон, становится анионом, аминогруппа, присоединив протон, становится катионом, а суммарный электрический заряд молекулы аминокислоты в результате остается равным нулю.
Самая простая из всех возможных аминокислот — глицин. Формула глицина: NH2?CH2?COOH. Интересно, что в нашем организме, как и в организмах многих животных, глицин служит нейтротрансмиттером, то есть веществом, передающим сигналы в нервной системе. Причем его действие на нервные клетки — тормозящее, то есть затрудняющее возбуждение. Именно поэтому глицин часто принимают в качестве успокоительного. Так вот, по химической формуле это типичная аминокислота. В цвиттер-ионной форме она будет выглядеть так: NH3+?CH2?COO?.
<<< Назад Мир кислот |
Вперед >>> Углеродный шовинизм |
- Бактерии, вырабатывающие аминокислоты
- 9. Органические вещества. Нуклеиновые кислоты
- 2.3.4.Нуклеиновые кислоты
- § 52 Строение и свойства неорганических веществ. Кислоты и основания
- Сложные неорганические вещества: кислоты и основания.
- 2.6. Органические вещества. Нуклеиновые кислоты
- Органические кислоты
- Нуклеиновые кислоты
- § 57 Соединения, необходимые для существования жизни: нуклеиновые кислоты, полисахариды
- 3.1. Аминокислоты