Книга: Наша математическая вселенная

Расстояние до звёзд

<<< Назад
Вперед >>>

Расстояние до звёзд

А что можно сказать о звёздах? Насколько они далеки? И что они такое? Я думаю, что это одно из величайших в истории «глухих» детективных дел. Определение расстояний до Луны и Солнца было впечатляющим достижением, но тут, по крайней мере, имелась в качестве подсказки некоторая информация: они интересным образом меняли своё положение на небе, их форму и угловые размеры можно было измерять. Но звезда представляется совершенно безнадёжным случаем! Она кажется тусклой белой точкой. Вы присматриваетесь и видите… всю ту же тусклую белую точку без малейших признаков формы и размера. Просто светящуюся точку. И, похоже, звёзды не перемещаются по небу, если не считать видимого вращения всех звёзд вместе, которое является иллюзией, вызванной вращением Земли.

Кое-кто в древности считал, что звёзды — это маленькие отверстия в чёрной сфере, сквозь которые просачивается далёкий свет. Джордано Бруно, напротив, предположил, что звёзды подобны нашему Солнцу, но находятся очень далеко и, возможно, обладают собственными населёнными планетами. Эти рассуждения не понравились католической церкви, и Бруно сожгли в 1600 году на костре.

В 1608 году неожиданно появился проблеск надежды: был изобретён телескоп. Галилео Галилей быстро его усовершенствовал и, посмотрев на звёзды, увидел… лишь белые точки. Возвращаемся на исходную позицию. У меня есть звукозапись, на которой я ребёнком играю «Ты свети, звезда, мерцая» на пианино моей бабушки Сигне. Ещё недавно, в 1806 году, когда эта песня появилась, строчка «Кто ты в тёмной вышине?» продолжала волновать многих, и никто не мог, положа руку на сердце, сказать, что он знает ответ.

Если звёзды — это действительно далёкие солнца, как предполагал Бруно, то они должны находиться гораздо дальше Солнца, чтобы светить так тускло. Но насколько дальше? Это зависит от того, насколько ярки они на самом деле. Спустя 32 года после сочинения песенки немецкий математик и астроном Фридрих Бессель сделал открытие. Выставьте вверх большой палец на расстоянии вытянутой руки и несколько раз попеременно закройте левый и правый глаз. Палец будто перепрыгивает вправо и влево на определённый угол относительно далёких предметов. Теперь поднесите палец немного ближе к глазам, и вы заметите, что угловая величина «прыжка» выросла. Астрономы называют эту угловую величину параллаксом, и, очевидно, её можно применить, чтобы определить расстояние до пальца. На практике вам не требуется заниматься математическими вычислениями, поскольку мозг выполняет их без усилий, и вы этого даже не замечаете. Тот факт, что два глаза фиксируют разные углы для объектов на разном расстоянии, существенен для понимания системы восприятия дальности в мозге, наделяющей нас трёхмерным зрением.

Если бы наши глаза были расставлены шире, мы лучше воспринимали бы глубину на больших расстояниях. В астрономии можно применить тот же метод параллакса, притворяясь, будто мы гиганты с глазами, разнесёнными на 300 млрд м, что соответствует диаметру земной орбиты вокруг Солнца. Это можно сделать, сравнивая телескопические фотографии с шестимесячным интервалом, за который Земля перемещается на противоположную сторону своей орбиты. Бессель заметил, что положения звёзд, за исключением одной, на снимках кажутся одинаковыми. Это звезда 61 Лебедя. Она, в отличие от других, смещалась на небольшой угол, показывая тем самым, что расстояние до неё почти в 1 млн раз больше, чем до Солнца, — это так далеко, что звёздному свету требуется 11 лет, чтобы достичь нас, тогда как солнечный свет доходит к нам за 8 минут.

Вскоре были измерены параллаксы других звёзд, так что стали известны расстояния до многих из них. Если вы ночью проследите за удаляющимся автомобилем, яркость его габаритных огней будет убывать обратно пропорционально квадрату расстояния до него (вдвое дальше — вчетверо слабее). Теперь, когда Бессель знал расстояние до звезды 61 Лебедя, он воспользовался законом обратных квадратов для вычисления её светимости. Полученный результат оказался сопоставим со светимостью Солнца, что с запозданием подтвердило правоту Джордано Бруно.

Почти одновременно, в 1814 году, немецкий оптик Йозеф фон Фраунгофер изобрёл спектроскоп, позволивший раскладывать белый свет на цвета и измерять их. Фраунгофер открыл в радуге загадочные тёмные линии (рис. 2.5) и выяснил, что их точные положения в цветовом спектре зависят от того, из чего сделан источник света, то есть они оказались своего рода спектральными отпечатками пальцев. В последующие десятилетия были измерены и занесены в каталоги спектры многих распространённых веществ. С помощью этой информации можно показать замечательный фокус на вечеринке и впечатлить друзей, определяя, что светится в их фонариках, лишь анализируя испускаемый ими свет и даже не подходя близко. Спектр солнечного света неожиданно показал, что Солнце, пылающий шар в небесах, содержит водород и некоторые другие элементы, хорошо известные на Земле. Более того, когда собранный телескопом звёздный свет изучили с помощью спектроскопа, оказалось, что звёзды в первом приближении состоят из той же смеси газов, что и Солнце. Это закрепило победу Бруно: звёзды — это далёкие солнца, сходные как по выделяемой энергии, так и по составу. Так за считанные десятилетия звёзды превратились из непостижимых белых точек в гигантские шары горячего газа, химический состав которых можно определить.


Рис. 2.5. Радуга, сфотографированная моим сыном Александром, ведёт не к горшку с золотом, а к золотой жиле информации об устройстве атомов и звёзд. В гл. 7 мы узнаем, что соотношение интенсивности различных цветов объясняется тем, что свет состоит из частиц (фотонов), а положение и ширину многих тёмных линий можно вычислить с помощью квантово-механического уравнения Шрёдингера.

Спектр — это настоящая золотая жила астрономической информации, и всякий раз, когда вам приходит в голову, что вы выжали из него всё, что можно, оказывается, что в нём закодировано что-нибудь ещё. Спектр позволяет измерить температуру объекта, не прикасаясь к нему термометром. Вы и без прикосновения знаете, что раскалённый добела кусок металла горячее раскалённого докрасна, и, аналогично, беловатые звёзды горячее красноватых. С помощью спектроскопа температуру можно определять очень точно. В качестве неожиданного бонуса теперь эта информация позволяет определить размеры звезды, подобно тому, как отгадывание одного слова в кроссворде помогает отгадать другое. Температура показывает, сколько света испускает каждый квадратный метр звёздной поверхности. Поскольку можно вычислить общее количество испускаемого звездой света (по расстоянию до неё и видимому блеску), теперь можно определить и площадь поверхности звезды в квадратных метрах и узнать, насколько она велика.

Спектр звезды также содержит скрытые подсказки о её движении, заключающиеся в небольших сдвигах частоты (цвета) излучения за счёт так называемого эффекта Доплера — того самого, который превращает сигнал проезжающего мимо автомобиля в характерное «вжи-и-и-и-у-у-у…»: частота выше, когда автомобиль приближается к вам, а затем становится ниже, когда он начинает удаляться. В отличие от Солнца, большинство звёзд состоит в устойчивых парных отношениях, кружась друг вокруг друга по постоянной орбите. Часто это кружение можно заметить благодаря эффекту Доплера, который заставляет спектральные линии звёзд двигаться взад и вперёд при каждом обороте. Величина этого смещения показывает скорость движения, а наблюдая за двумя звёздами, можно иногда измерить расстояние между ними. В совокупности эта информация позволяет показать ещё один замечательный фокус: мы можем взвешивать звёзды, не помещая их на весы, а применяя ньютоновы законы движения и тяготения для вычисления того, насколько массивными должны быть звёзды, чтобы двигаться по наблюдаемым орбитам. В некоторых случаях доплеровские смещения позволяют обнаружить планеты, обращающиеся вокруг звезды. Если планета проходит на фоне звезды, небольшое уменьшение звёздного блеска позволяет определить размер планеты, а небольшое изменение в спектральных линиях показывает, есть ли у планеты атмосфера и из чего она состоит. Спектры — это благодатный дар природы. Определение ширины спектральных линий у звёзд заданной температуры позволяет измерить газовое давление. А по тому, как спектральные линии расщепляются на две или более линий, можно измерить напряжённость магнитного поля на поверхности звезды.

Подведём итоги. Вся имеющаяся у нас информация о звёздах получена от доходящего до Земли слабого света, однако вдумчивая детективная работа позволила нам извлечь из него сведения о расстоянии до звёзд, их размерах, массе, составе, температуре, давлении, магнетизме и о наличии у них планетных систем. То, что человеческий разум смог узнать всё это из, казалось бы, непостижимых белых точек, — это триумф, который, я думаю, заставил бы гордиться собой даже Шерлока Холмса и Эркюля Пуаро!

<<< Назад
Вперед >>>

Генерация: 0.527. Запросов К БД/Cache: 0 / 0
Вверх Вниз