Книга: Коснуться невидимого, услышать неслышимое

Слух

<<< Назад
Вперед >>>

Слух

Слуховой рецепторный аппарат относят к механорецепторам. Это значит, что он активируется механическими стимулами. Ультразвук, как уже известно, может активировать механорецепторы, например тактильные или температурные. (Напомним, что изучение температурной рецепции с помощью ультразвука позволило рассматривать ее как разновидность механорецепции). Поэтому вполне естественно пришла мысль сфокусировать ультразвук на улитку человека.

Но как «подобраться» к улитке, расположенной глубоко в височной кости, откуда фокусировать ультразвук на улитковый лабиринт, в котором расположены рецепторы? Направить ультразвук через ухо, естественным путем, нереально. В наружном слуховом проходе, в полостях среднего уха и сосцевидного отростка содержится воздух. Затухание ультразвука в воздухе очень велико, потребуется значительное увеличение интенсивности, а это невыгодно по целому ряду соображений. И главное — это может быть опасно: вспомним, что фокусированный ультразвук большой интенсивности начали использовать прежде всего для разрушений. Направить ультразвук в лабиринт через теменную или затылочную области мешают волосы — они задерживают ультразвуковую энергию, переводят ее в тепло, ненужное в данном случае. Фокусировать ультразвук через лоб могут помешать заполненные воздухом лобные пазухи. По размерам они очень отличаются у разных людей. Наиболее выгодной для фокусирования оказалась область, расположенная кверху и кпереди от основания ушного козелка. В глубине от поверхности кожи в этой области, на 30—40 мм, расположен улитковый лабиринт. Височная кость, в которой он находится, — одна из самых сложно устроенных костей черепа, со множеством изгибов, выступов и впадин. Поэтому сфокусировать ультразвук на слуховые рецепторы далеко не так просто, как в воде или другой однородной среде. Чтобы максимально точно направить ультразвук к так называемой пирамиде височной кости, в которой расположен улитковый лабиринт со слуховыми рецепторами, пришлось разработать и изготовить специальную координатную систему, использовать новые методические приемы.

Человека укладывают на бок. Голова — на специальной подушке, позволяющей лежать удобно и таким образом, чтобы указанная проекционная область возле козелка находилась в горизонтальном положении. Рядом — стойка с подвижной перекладиной, направленной к голове испытуемого. На перекладину крепят фокусирующий излучатель ультразвука, координатное устройство и полиэтиленовый мешок с водой (рис. 19). Рассмотрим подробнее координатную систему, изображенную на рисунке. Ультразвуковой излучатель опущен в воду (координатным устройством он может перемещаться в мешке в разные стороны с точностью до 0.5 мм). Сбоку от мешка — дугообразный кронштейн с длинным, закругленным на конце стержнем. Кончик стержня — указатель фокуса — отмечает место расположения центра фокальной области излучателя. Если указатель касается кожи, то именно в месте соприкосновения и находится центр. Кожа служит уровнем отсчета расстояния при перемещении фокальной области в глубинные ткани. Уже указывалось, что улитковый лабиринт углублен на 30—40 мм, считая от проекционной точки на коже. Как практически направляют в улитку фокальную область излучателя? Испытуемого предупреждают, что его голова должна быть неподвижна. Затем экспериментатор двигает излучатель ультразвука с помощью координатного устройства таким образом, чтобы кончик указателя фокуса оказался в проекционной точке на коже у козелка. Указатель фокуса снимают, полиэтиленовый мешок, в котором находится ультразвуковой излучатель, приводят в соприкосновение с кожей головы так, чтобы мешок слегка прижимал голову к подушке. При этом мешок препятствует непроизвольному смещению головы. Стенка мешка соприкасается с кожей головы через прослойку вазелина. Остается переместить в мешке излучатель ближе к голове на заданное расстояние, например 35 мм, и фокальная область будет совмещена с улитковым лабиринтом. Теперь можно приступить к воздействию ультразвуком.


Рис. 19. Координатная система для ультразвукового воздействия на слуховой лабиринт человека.

Для экспериментов на животных также изготавливают координатные системы, соответствующие виду животного и задачам исследования. Очень подходит для экспериментов с ультразвуком лягушка — животное, приспособленное к обитанию в воде. Передачу ультразвуковой энергии лягушке можно осуществлять в воде, что значительно уменьшает потери акустической энергии по сравнению с другими жидкими средами и тем более воздухом. Одна из таких систем схематично изображена на рис. 20. Излучатель неподвижен. Животное располагается в ванночке с отверстием, через которое проходит ультразвук. Ванночку можно передвинуть ближе или дальше по отношению к излучателю, меняя тем самым расположение центра фокальной области. Не будем останавливаться на деталях совмещения центра фокальной области с местом воздействия ультразвуком, так как они различны в зависимости от задач исследования, требований к точности совмещения и оценки результатов.


Рис. 20. Схема экспериментальной установки для воздействия фокусированным ультразвуком на слуховой лабиринт лягушки.

1 — обездвиженная лягушка в воде, 2 — пластина, на которой расположено животное, 3 — перемещающаяся по вертикальной оси ванночка с водой, 4 — кожух фокусирующего излучателя, 5 — фокусирующий излучатель ультразвука, 6 — расположение центра фокальной области излучателя, 7 — звуковой динамик, 8 — вода.

Вернемся к человеку. Если при совмещении фокальной области излучателя с улитковым лабиринтом подавать ультразвук непрерывно, то он не вызовет каких-либо слуховых ощущений. Напомним, что речь идет об ультразвуке частотой в диапазоне 0.4—5 МГц. При действии ультразвука частотой ниже 0.225 МГц слуховое ощущение возникает. Это очень высокий тон, причем его высота остается постоянной с изменением частоты ультразвука. С увеличением частоты от 20 кГц — верхней границы слухового диапазона — до 225 кГц возрастают лишь пороги слухового ощущения. Итак, в нашем случае непрерывно излучаемый ультразвук не вызывает слуховых ощущений. Однако стоит только применить импульсы ультразвука длительностью, например, около 1 мс каждый с разной частотой их следования или промодулировать ультразвук по амплитуде каким-либо сигналом из диапазона слышимости человека, как появится слуховое ощущение в соответствии с частотой следования стимулов (импульсов) или с частотой и характером амплитудной модуляции. Допустим, модуляция производилась синусоидальными сигналами или речью — человек услышит соответственно чистый тон или речь. Если предъявлять отдельные импульсы ультразвука, будут слышаться щелчки.

В экспериментах на лягушках использовали как ультразвуковые, так и звуковые стимулы. Регистрировали электрическую активность, вызванную стимулами в слуховой зоне среднего мозга. Оказалось, что можно подобрать звуковые и ультразвуковые стимулы таким образом, что они при околопороговых интенсивностях вызывали сходные электрические ответы. При увеличении интенсивности ответы на ультразвук менялись по сравнению с ответами на звук. Уменьшался скрытый период, т. е. время от начала предъявления стимула до появления электрического ответного сигнала; круче возрастала амплитуда сигнала, а последующее ее уменьшение становилось более пологим. Особенно отчетливо различия выступали при интенсивности звуковых и ультразвуковых стимулов выше 35—40 дБ над порогом обнаружения ответной реакции.

Различия в характере ответных электрических реакций на звук и ультразвук дали основание предполагать, что при небольших интенсивностях звук и ультразвук активируют преимущественно рецепторный аппарат. С увеличением интенсивности ультразвук начинает активировать проводниковые структуры, в частности волокна слухового нерва. Исследования с применением гистохимических методов окраски слуховых рецепторных клеток и волокон слухового нерва в сочетании с электрофизиологическими данными подтвердили, что при интенсивностях до 35—40 дБ над порогом действие звука и ультразвука сходно. При больших интенсивностях ультразвука рецепторные клетки отвечают признаками утомления, а электрический ответ возникает преимущественно в результате активации ультразвуком волокон слухового нерва. Активирующее действие ультразвука на волокна подтвердилось в экспериментах с разрушением рецепторного аппарата. В этих случаях электрические ответы из слуховых областей среднего мозга регистрировались при интенсивности ультразвука около 40 дБ и выше над порогом ответной реакции функционирующего рецепторного аппарата и были аналогичны уже описанным ответам, отличавшимся от реакции на звук.

Как уже указывалось, наблюдения на животных имеют аналогии в клинико-физиологических исследованиях. Известно, что у некоторых людей глухота вызвана поражением рецепторного аппарата. Таким людям не помогает лекарственное и оперативное лечение. Медицина пока лишена возможностей восстанавливать рецепторы. Не помогают также современные слуховые аппараты, являющиеся по существу миниатюрными усилителями звука. И это вполне понятно: как ни усиливай звук, человек все равно не услышит его, если не имеет соответствующего приемника — рецепторного аппарата. В то же время установлено, что у большинства таких людей в какой-то степени сохранена функция волокон слухового нерва. Начиная с 1957 г. за рубежом предпринимаются попытки активировать волокна электрическим током с помощью электродов, вводимых в слуховой нерв или в ушной лабиринт. Попытки бывают успешными: под действием тока у человека возникают слуховые ощущения. Применяя различные электрические сигналы, подаваемые через электроды, удается ранее глухим людям вводить слуховую информацию. После специального обучения некоторые из них оказываются способными воспринимать достаточно сложную информацию, в том числе музыку и речь.

Если ушной лабиринт человека из такого контингента глухих подвергнуть действию фокусированного ультразвука, человек также может услышать. Это — одно из подтверждений действия ультразвука на волокна слухового нерва. Как и в экспериментах на животных с разрушенным рецепторным аппаратом, пороги слуховых ощущений, вызванных ультразвуком, повышены по сравнению с порогами здоровых людей, причем на те же 35—40 дБ. Сходство проявляется и в ограничении динамического диапазона: слуховые ощущения глухого человека и электрические реакции из слуховых центров среднего мозга у животных с разрушенным рецепторным аппаратом проявляются в диапазоне всего 10—15 дБ. При дальнейшем усилении стимуляции животных сначала прекращается увеличение, а затем возникает уменьшение амплитуды ответа, появляется опасность повреждающего действия ультразвука, о чем свидетельствуют морфологические исследования. У человека при соответствующих интенсивностях стимуляции перестает увеличиваться громкость, а в месте контакта мешка с водой, в которую погружен излучатель, и кожи возникает ощущение тепла. Тепло, в данном случае побочный феномен, оказалось весьма полезным, так как служит предостережением от слишком сильных ультразвуковых воздействий.

Результаты исследований выдвигают вопрос, можно ли использовать ультразвук для протезирования глухих. Несмотря на получение у некоторых глухих людей слуховых ощущений с помощью ультразвука, положительно ответить сейчас на этот вопрос не представляется возможным. Во-первых, неизвестно, как долго можно пользоваться безопасно ультразвуковыми воздействиями даже небольших интенсивностей; во-вторых, нет еще достаточно портативных приборов, позволяющих осуществлять воздействие. Наконец, надо полагать, что как и при электроимплантационном протезировании, т. е. при стимуляции нервных волокон электрическим током с помощью электродов, введенных в улитку или слуховой нерв, при ультразвуковом воздействии потребуется обучение по индивидуальным программам, составленным в соответствии с функциональными возможностями сохранившихся нервных волокон и особенностями нервной системы человека.

Клинические исследования на больных с разными формами нарушений слуха показали целесообразность использования разных режимов воздействия фокусированным ультразвуком в качестве дополнительных диагностических методов. Диагностика поражений слуха чаще всего складывается из аудиологического и оториноларингологического обследований. Иногда привлекают дополнительные методы: рентгеновский, исследование функции вестибулярного аппарата, лицевого нерва и т. д.

Основу аудиологического обследования составляет тональная аудиометрия. Она преследует цель получить частотно-пороговую характеристику слуха по воздушной и костной проводимости. Слуховые пороги измеряют не во всем диапазоне слышимости, это было бы чрезвычайно трудоемко, а на фиксированных октавных частотах, т. е. последовательно увеличивающихся вдвое от 125 до 8000 Гц. Ухудшение слуха — повышение порогов слуховых ощущений — оценивают в децибелах от порогов нормально слышащих.

Подобно аудиограмме, можно получить частотно-пороговую кривую при действии на улитковый лабиринт фокусированного ультразвука. Для лучшего сопоставления с аудиограммой ультразвук можно модулировать по амплитуде синусоидальными колебаниями аудиометрических частот. Такая кривая незначительно отличается от аудиограммы нормально слышащих людей и значительно — у больных с нарушениями слуха. Отличается она и от аудиограммы этих больных. Для некоторых заболеваний различия весьма типичны и поэтому могут быть использованы в диагностике. Например, фокусированный ультразвук оказался полезным в диагностике отосклероза, заболевания, проявляющегося в ограничении подвижности слуховых косточек, которое сопровождается ухудшением слуха. При отосклерозе слух снижен главным образом по воздушной проводимости, т. е. когда звук распространяется по воздуху и с помощью ограниченно подвижных слуховых косточек. Если механические колебания поступают к рецепторному аппарату с участием костно-тканевой проводимости, слуховые пороги повышаются незначительно. Диагноз обычно ставится с учетом течения заболевания, сведений о состоянии слуха у родителей и родственников, осмотре уха и данных аудиограммы, на которой слуховые пороги по костной проводимости ниже воздушных порогов.

Однако, если раньше бывали воспалительные заболевания уха, повреждающие аппарат звукопроведения, аудиограмма может оказаться очень похожей на полученную при отосклерозе, а изменения барабанной перепонки могут быть очень незначительными или вообще незаметными при осмотре. В таком случае для уточнения диагноза очень полезным оказывается фокусированный ультразвук. На рис. 21 показаны аудиограмма и ультразвуковая частотно-пороговая кривая. Видно, что слуховые пороги при ультразвуковом воздействии не совпадают со слуховыми порогами на звук при воздушном и костном проведении. Кроме того, при некоторых частотах модуляции ультразвука в диапазоне его интенсивностей до 50 дБ относительно порога для нормально слышащих людей определить порог у больных вообще не удается. Это избирательное отсутствие чувствительности к ультразвуку, «провалы» — очень типичный признак в ультразвуковой диагностике отосклероза.


Рис. 21. Тональные аудиограммы и ультразвуковая частотно-пороговая кривая при отосклерозе.

Ультразвук частотой 2.47 МГц модулирован по амплитуде синусоидальными колебаниями аудиометрических октавных частот — от 125 до 8000 Гц. Кривая костной проводимости получена при расположении костного телефона на лбу. Кривые воздушной проводимости и ультразвуковая — с правого уха.

Фокусированный ультразвук успешно используют в диагностике нейросенсорной тугоухости, для уточнения степени подвижности лабиринтных окон при различных заболеваниях среднего уха, что бывает важно в решении вопроса о слухоулучшающей операции. Применяют фокусированный ультразвук и в диагностике опухолей слухового нерва на ранних стадиях их развития. Это чрезвычайно важно для успешного оперативного лечения таких больных.

Факт слухового восприятия фокусированного ультразвука глухими, свидетельствующий о сохранении у них части слуховых волокон, позволяет использовать ультразвук не только для попыток специализированного протезирования, на которые уже указывалось, но и для отбора кандидатов к электроимплантационному протезированию. Это совсем новая, пока только намечающаяся область применения фокусированного ультразвука.

<<< Назад
Вперед >>>

Генерация: 0.462. Запросов К БД/Cache: 3 / 1
Вверх Вниз