Книга: О времени, пространстве и других вещах
Глава 11 Забудьте об этом!
<<< Назад Часть вторая О других вещах |
Вперед >>> Глава 12 Ничего считается |
Глава 11
Забудьте об этом!
Недавно[8] я просматривал новый учебник по биологии («Биологическая наука»: взгляд на жизнь, написанный коллективом именитых авторов и опубликованный в 1963 году). Мне он показался очень занимательным.
К несчастью, вначале я прочел предисловие (да, я принадлежу именно к такой категории людей), которое повергло меня в глубочайшее уныние. Позвольте мне привести выдержки из первых двух параграфов:
«С каждым новым поколением наш багаж научных знаний увеличивается в 5 раз… В настоящее время имеется в 4 раза больше важнейших знаний по биологии, чем в 1930 году, и в 16 раз больше, чем в 1900 году. При существующей скорости накопления знаний к 2000 году вводный курс биологии будет содержать в 100 раз больше информации, чем в начале века».
Представляете, какое это произвело на меня впечатление? Всю свою сознательную жизнь я стремился идти в ногу с наукой, а в отдельные моменты считал, что мне это удается, причем весьма неплохо.
Но потом мне на глаза попадается нечто подобное, и мир начинает рушиться! Оказывается, я вовсе не иду в ногу с наукой. Хуже того, я от нее безнадежно отстал! И с каждым днем отстаю все больше!
Наконец, я перестаю жалеть себя, неспособного поспевать за прогрессом, и начинаю думать о жизни вообще. Что происходит с Homo sapiens? Похоже, человечество не собирается отказываться от привычки приукрашивать факты и манипулировать ими. В недалеком будущем нам всем грозит смерть от злокачественного образования. Клетки нашего мозга начнут одна за другой отмирать от несварения бесчисленных фактов и концепций, а те, что уцелеют, окажутся погребенными под обломками информационных взрывов.
Но затем мне повезло. На следующий день после «Биологической науки» мне на глаза попалась старая книга под названием «Арифметика Пайка». Заглавие на титульном листе было куда более информативным (в те дни к заголовкам относились намного серьезнее). Оно гласило: «Новая и полная система арифметики, составленная для использования гражданами Соединенных Штатов Николасом Пайком». Впервые эта книга была опубликована в 1785 году, но у меня было ее второе издание, расширенное и дополненное, увидевшее свет в 1797 году.
В этой книге оказалось более 500 страниц, исписанных мелким шрифтом, без иллюстраций или диаграмм. Вся она была посвящена арифметике, лишь небольшие разделы в самом конце являлись введением в алгебру и геометрию.
Я был чрезвычайно заинтересован. Все-таки у меня есть двое детей школьного возраста, да и сам я когда-то учился в школе и знаю, что представляют собой книги по арифметике. Во-первых, все они не такие объемные, а во-вторых, в них не содержится и пятой части словесного материала, имеющегося у Пайка.
Возможно, мы что-то упустили?
Я внимательно проштудировал Пайка и теперь не сомневаюсь, что мы действительно кое-что обходим молчанием. Но в этом нет ничего плохого. Беда в том, что мы умалчиваем недостаточно.
Так, на странице 19 Пайк увлеченно перечисляет римские числительные, доведя их перечень до полумиллиона.
Начиная со времен Средневековья в Европе используются арабские цифры, с их появлением римские лишились своего значения. А до тех пор кто знает, сколько бумаги приходилось изводить, чтобы довести до сведения желающих методы расчетов с использованием римских цифр? Собственно говоря, с переходом на другие цифры методы расчетов остались прежними, только выполнять их стало гораздо легче, и объяснений требуется только сотая часть. Знания не утрачены, в прошлом остались лишь неэффективные правила.
Но спустя 500 лет после заслуженной смерти римских числительных Пайк снова включает их в учебное пособие и ожидает, что читатели смогут переводить их в арабские и обратно, хотя не дает никаких инструкций о том, как ими манипулировать. Между прочим, почти через 200 лет после Пайка римские числительные все еще изучаются! Моя маленькая дочь сейчас как раз занимается этим.
Но зачем? Конечно, римские цифры все еще встречаются на некоторых указателях, могильных плитах, на циферблатах часов, они иногда украшают фасады зданий, но ведь в этом нет никакой необходимости! Это делается для того, чтобы произвести впечатление, придать больше значимости, солидности, античный колорит. И больше ничего.
Осмелюсь предположить, что существуют сентиментальные личности, искренне уверенные, что знание римских числительных является своеобразными воротами в мир высокой культуры, а умение обращаться с ними сродни прикосновению к руинам Парфенона, но меня такой подход чрезвычайно раздражает.
Римские числительные? Забудьте о них. Лучше освободите место для новых, ценных знаний.
Но разве мы можем позволить себе забывать? А почему бы и нет? Мы уже многое забыли, даже больше, чем вы думаете. Наша беда не в забывчивости, а в том, что мы помним слишком хорошо. Мы забываем недостаточно много.
Значительная часть книги Пайка посвящена еще не полностью забытым нами материалам. Поэтому современные пособия по арифметике намного короче. Если бы мы могли забывать раз и навсегда, арифметика, которую сейчас изучают наши дети, стала бы еще короче.
Приведу пример. В книге Пайка много всевозможных таблиц, которыми, как он считает, читатель обязан уметь пользоваться. Пятая таблица озаглавлена «Меры сукна».
Знаете ли вы, что 21/2 дюйма составляют ноготь? Нет? Так знайте. 16 ногтей — это ярд, а 12 — локоть.
Но это еще не все! 12 ногтей (27 дюймов) — это только фламандский локоть. 20 ногтей (45 дюймов) образуют английский локоть, а 24 ногтя (54 дюйма) — французский. И это еще не все! 16 ногтей плюс 11/5 дюйма (371/5 дюйма) дадут шотландский локоть.
Итак, если вы собираетесь заниматься бизнесом, связанным с импортом или экспортом сукна, у вас имеется только два выхода: первый — изучить все эти локти, второй — найти способ от них избавиться.
Оказывается, каждый товар измеряется своими особыми мерами. Можно продать или купить фиркин масла (8–9 галлонов), панч чернослива, стоун мяса и т. д. Каждое из этих количеств может быть выражено некоторым числом фунтов (имеются в виду фунты «эвердьюпойс»; ведь существуют еще тройские и аптекарские фунты, а также ряд других). Пайк не обделяет своим вниманием ни одну из единиц.
Быть может, вам необходимо измерить расстояние? Нет ничего проще! Знаете ли вы, что 792/100 дюйма составляют 1 линк, 25 линков — это 1 поль, 4 поля — 1 чейн, 10 чейнов — 1 фурлонг, а 8 фурлонгов — 1 милю.
Вас интересует возможность измерить количество пива или эля? Тогда придется запомнить, что 2 пинты составляют кварту, а 4 кварты — галлон.
Однако в колониальные времена галлон пива или эля был «детской» мерой. Следовало еще научиться выражать «мужское» количество. Что ж, 8 галлонов — это фиркин, но «фиркин эля в Лондоне». Чтобы получить «фиркин пива в Лондоне», потребуется 9 галлонов. Промежуточное количество — 81/2 галлона — обозначается «фиркин эля или пива». Эта мера действовала преимущественно за пределами Лондона, где провинциалы проявляли меньше щепетильности при определении различия между этими напитками.
Давайте продолжим: 2 фиркина (думаю, что речь идет о промежуточных величинах, хотя и неуверен) составляют килдеркин, а 2 килдеркина — это уже баррель. 11/2 барреля — это 1 хогзхед, 2 барреля — панчен (бочка), а 3 барреля — бат.
Запомнили?
Давайте попробуем разобраться с мерами сыпучих тел.
2 пинты дают кварту, а 2 кварты — поттл, причем не боттл (bottle — бутылка), а именно поттл. И не говорите, что вы в жизни не слышали ни о чем подобном!
2 поттла составляют галлон, а 2 галлона — пек. 4 пека — это уже бушель. (Передохните, и двинемся дальше.) 2 бушеля — это страйк, 2 страйка — коум, 2 коума — квартер, а 4 квартера — челдрон (хотя в требовательном городе Лондоне челдрон — это 41/2 квартера). И наконец, 5 квартеров составляют вес, а 2 веса — ласт.
Поверьте, я ничего не придумал. Все это приведено у Пайка на странице 48.
Интересно, неужели дети, изучавшие арифметику в 1797 году, должны были все это запоминать? Полагаю, что да. Ведь дальше Пайк уделил большое внимание процессу сложения. Причем сложного сложения.
Дело в том, что та операция, которую мы все считаем сложением, по сути, является простым сложением. Сложное сложение — нечто отличное. Попробую объяснить, что это такое.
Предположим, у вас имеется 15 яблок, у вашего друга — 17, а у прохожего — 19. Вы решили собрать их все в кучу. А сделав это, вы заинтересовались, сколько всего получилось. Причем, не желая пересчитывать яблоки по одному, вы (не забыв о том, что получили образование в колледже) решаете сложить 15 + 17 + 19. Начинаете, как водится, с единиц. 5 + 7 + 9 = 21. Затем вы делите 21 на 10, получаете частное 2 и остаток 1, вы записываете 1 и переносите полученное частное к десяткам…
Ну как? Понравилось? Не сомневаюсь, что вы уже с нетерпением ждете возможности задать мне вопрос: «Откуда вы все это взяли?» А быть может, и более конкретный: «Зачем надо было делить на 10?»
Но, уважаемые читатели! Ведь именно эти операции вы выполняете при сложении! Только благодаря тому, что мы пользуемся удивительно милосердной десятичной системой исчисления, при делении любого двузначного числа на 10 его первая цифра — это частное от деления, а вторая — остаток. По сути дела, мы имеем частное и остаток, не выполняя самого действия деления, поэтому последующее сложение выполняется автоматически. Если при сложении единиц получилось 21, мы записываем цифру 1, а 2 переносим к десяткам. Если бы при сложении единиц получилось 57, мы бы записали 7, а к десяткам перенесли 5 и т. д.
Так получается только потому (не забывайте!), что, выполняя сложение «в столбик», начиная справа и двигаясь налево, каждая правая колонка цифр представляет величину в десять раз меньшую, чем ее соседка слева. Самая правая колонка — единицы, левее — десятки, сотни и т. д.
Приведенное выше объясняет, почему процесс сложения у нас достаточно прост. Пайк называет его «простым сложением».
А теперь представьте, что у вас есть 1 дюжина и 8 яблок, у вашего друга — 1 дюжина и 10 яблок, а у случайного прохожего — 1 дюжина и 9 яблок. Тогда нам придется сложить следующие величины.
1 дюжина 8 единиц
1 дюжина 10 единиц
1 дюжина 9 единиц
8 + 10 + 9 = 27. Поэтому мы записываем 7 и переносим в следующую колонку 2? Ни в коем случае. Отношение «дюжин» к «единицам» вовсе не 10, а 12. А мы используем десятичную систему исчисления. Поэтому мы не имеем права действовать автоматически. Придется подумать.
Прежде всего полученную сумму 27 следует разделить на величину «отношения дюжин к единицам», то есть на 12. Получается частное 2 и остаток 3. Вот мы и записываем 3, а переносим 2. В колонке дюжин получим: 1 + 1 + 1 + 2 = 5. Искомая сумма — 5 дюжин и 3 яблока.
Если отношение между соседними колонками цифр отличается от 10, следует производить все приведенные выше действия, то есть выполнять «сложное сложение». К этой операции придется прибегнуть, если вам потребуется сложить 5 фунтов 12 унций и 6 фунтов 8 унций (в фунте 16 унций) или если нужно будет сложить 3 ярда 2 фута 6 дюймов и 1 ярд 2 фута 6 дюймов (в 1 футе 12 дюймов, а в 1 ярде 3 фута).
Хотите — посчитайте первую сумму. А я посчитаю вторую.
3 ярда 2 фута 6 дюймов
1 ярд 2 фута 8 дюймов
6 + 8 = 14 дюймов. 14 : 12 = 1, остаток 2. Записываем 2 и переносим 1 в соседнюю колонку. 2 + 2 + 1 = 5. 5 : 3 = 1, остаток 2. Записываем 2 и переносим 1 в соседнюю колонку. 3 + 1 + 1 = 5. Искомая сумма — 5 ярдов 2 фута 2 дюйма.
Но по какой причине мы должны использовать так много различных недесятичных систем? Для этого существует много причин (все они в разное время были более или менее важными). Но сейчас мы достаточно поумнели и пользуемся только (или почти только) десятичной. Если бы представилось возможным, мы бы напрочь забыли о сложном сложении, сложном вычитании, так же как и о сложных умножении и делении (они тоже, как вы догадываетесь, существуют).
Между прочим, иногда сама природа бывает против универсальной десятки. При измерении времени, к примеру, продолжительность суток и года устанавливается астрономическими условиями, и отказаться от них невозможно. Сложное сложение и остальные действия все-таки должны существовать для таких специальных случаев.
Но кто нас заставляет измерять величины в фиркинах, поттлах или фламандских локтях? Они ведь созданы людьми, и нельзя забывать, что меры созданы для людей, а не наоборот.
Существует система измерения, основанная на 10. Она носит название метрической и применяется во всем цивилизованном мире, за исключением некоторых англоговорящих стран (например, Великобритании и США).
Не принимая метрическую систему, мы только попусту теряем время, поскольку абсолютно ничего не приобретаем, пользуясь отличной от всех системой измерений. Потеря времени (кстати, весьма дорогая штука), насколько я могу судить, ничем не компенсируется. Конечно, переделка существующих инструментов и приборов сегодня обошлась бы недешево. Надо было заниматься этим сто лет назад. Тогда расходы были бы несоизмеримы.
Между прочим, у наших обожаемых и таких неудобных мер существуют яростные защитники. Правда, они готовы отказаться от челдронов и коумов, но отстаивают наше право на дюймы и футы, пинты и кварты, пеки и бушели, утверждая, что перечисленные меры «проще и естественнее», чем метры и литры.
Возможно, существуют люди, находящие нечто опасно иноземное и даже радикальное (как тут не вспомнить позабытое слово «якобинский») в метрической системе. Кстати, Соединенные Штаты были в числе первопроходцев.
В 1786 году, то есть за 13 лет до изобретения французскими революционерами метрической системы, Томас Джефферсон (выдающийся «якобинец», во всяком случае с точки зрения федералистов) увидел свое предложение принятым в молодых Соединенных Штатах. Здесь была установлена десятичная монетная система.
До этого мы использовали британскую монетную систему, устрашающе сложную, громоздкую и нелепую. Достаточно сказать, что англичане, веками приученные терпеть любой абсурд, если его можно назвать «традиционным», сами устали от своей денежной системы и теперь активно обсуждают возможность перехода на десятичную систему.
Давайте посмотрим, что представляют собой английские деньги. Начнем с того, что 4 фартинга — это 1 пенс, 12 пенсов — 1 шиллинг, 20 шиллингов — 1 фунт. Все это дополняет неразбериха в терминах: не забывайте, что есть еще полпенса, шесть пенсов, а также кроны, полкроны, флорины, гинеи и черт знает что еще, созданное, по-моему, для того, чтобы добавить головной боли британским школьникам и поставить в тупик туристов.
Пайк дает подробные инструкции о порядке обращения с фунтами, шиллингами и пенсами. Думаете, напрасно? Ну почему же. Попробуйте-ка разделить 5 фунтов 13 шиллингов и 7 пенсов на 3. Получилось?
Первоначально денежная система в США выглядела следующим образом: 10 милей — это 1 цент, 10 центов — 1 дайм, 10 даймов — 1 доллар, 10 долларов — 1 игл. В современной Америке используются только доллары и центы.
Результат? Американские деньги могут быть выражены в десятичной форме, и с ними можно обращаться как с обычными десятичными числами. Американского школьника, изучившего числительные, остается только научить узнавать обозначение доллара, и он готов пользоваться деньгами. У английского школяра забот не в пример больше.
Остается только сожалеть, что тринадцатью годами позже, в 1799 году, когда появилась метрическая система, наши антибританские и профранцузские чувства оказались недостаточно сильными, чтобы ее принять. Если бы мы тогда сделали этот шаг, то уже давно забыли бы о пеках и унциях, как когда-то выбросили из головы пенсы и шиллинги. (Вряд ли найдется американец, который пожелал бы вернуться к английской денежной системе, появись вдруг такая возможность.)
Мне бы очень хотелось увидеть одни и те же денежные единицы во всем мире. Везде. А почему бы и нет?
Понимаю, что теперь меня можно обвинить в попытках причесать все человечество под одну гребенку и даже назвать конформистом. Уверяю вас, я вовсе не конформист! У меня нет никаких возражений против местных обычаев, языков или национальной кухни. Наоборот, я все это поддерживаю и приветствую! Я против местничества, провинциализма, узости кругозора и интересов, которые так мешают людям жить нормально. Если высчитаете, что местничество является признаком самобытности, придает шарм и колорит, позвольте мне привести еще одну выдержку из Пайка.
«Федеральные деньги» (доллары и центы) были введены за 11 лет до выхода в свет второго издания его книги, поэтому он привел цитату из соответствующего закона и дал к нему всесторонние комментарии.
А поскольку вместе с федеральной использовались и другие системы, он сформулировал правила конвертирования (по Пайку — превращения) одной денежной единицы в другую. Далее следует обещанная цитата. Я не буду приводить сами правила, только список необходимых «превращений».
«I. Превратить денежные единицы Нью-Хэмпшира, Массачусетса, Род-Айленда, Коннектикута и Вирджинии:
1. В федеральные деньги.
2. В денежные единицы Нью-Йорка и Северной Каролины.
3. В денежные единицы Пенсильвании, Нью-Джерси, Делавэра и Мэриленда.
4. В денежные единицы Южной Каролины и Джорджии.
5. В английские деньги.
6. В ирландские деньги.
7. В деньги Канады и Новой Шотландии.
8. В деньги Франции.
9. В деньги Испании.
II. Превратить федеральные деньги в денежные единицы Новой Англии и Вирджинии.
III. Превратить денежные единицы Нью-Джерси, Пенсильвании, Делавэра и Мэриленда:
1. В денежные единицы Нью-Хэмпшира, Массачусетса, Род-Айленда, Коннектикута и Вирджинии.
2. В денежные единицы Нью-Йорка…»
Пожалуй, на этом я остановлюсь. Вы, несомненно, поняли, что я хочу сказать.
Разве можно сожалеть о том, что весь этот провинциальный колорит исчез? Неужели вы грустите о том, что, выезжая за границы своего штата, не испытываете неудобств, производя громоздкие арифметические расчеты, делая даже самую мелкую покупку? Кстати, у вас теперь никогда не появится необходимость втолковывать случайному прохожему, приехавшему из другого штата, тонкости своей денежной системы! Как хорошо, что о подобных трудностях можно навсегда забыть!
А теперь скажите, зачем нужно пятьдесят комплектов законов о браке и разводе?
В 1752 году Великобритания и ее колонии отказались от юлианского календаря и приняли более точный с точки зрения астрономии григорианский календарь. Почти полвека спустя Пайк все еще приводит в своей книге подробные правила решения сложных задач, связанных с разными календарями. Но зачем? Разве мы не можем начисто забыть обо всех проблемах юлианского календаря?
Прекрасная возможность выбросить из головы все календарные сложности — это принять рациональный календарь, в котором были бы прочно связаны день месяца и день недели и постоянно повторялись трехмесячные циклы. Это мог бы сделать единый мировой календарь.
А мы могли бы о многом позабыть.
Мне бы хотелось, чтобы во всем мире говорили по-английски. Вовсе не обязательно, чтобы наш язык был единственным или главным. Было бы замечательно, чтобы каждый человек, независимо от того, какой язык его родной, мог также свободно говорить по-английски. Общение людей стало бы значительно проще и легче. А со временем, быть может, люди и сами захотят перейти на английский язык.
Это сэкономило бы массу времени!
Вы спросите, почему именно английский? С одной стороны, большая часть населения планеты уже говорит по-английски: это их первый или второй язык. Причем по-английски говорит больше людей на Земле, чем на любом другом языке. Согласитесь, это неплохая основа. Во-вторых, английский язык является основным языком общения ученых, и этот аспект, пожалуй, может считаться решающим.
А мы, со своей стороны, должны максимально упростить людям переход на английский язык, наша задача — рационализировать правописание и грамматику.
Английское правописание сегодня немногим лучше, чем китайские иероглифы. Глядя на очередное английское слово, никогда нельзя быть точно уверенным в его произношении. Как, к примеру, произнести слова: rough, through, though, cough, hiccough, lough? И чем вызвана необходимость выражать буквосочетанием ough разные звуки? Возможно, кому-то покажется удобным писать вместо этих слов другие — ruff, throo, thoh, cawf?
Ведь мы уже перешли на написание слова hiccup, и оно никому не кажется необычным. Слово цвет мы уже давно пишем colour или color, центр — center или centre, серый — grey или gray и т. д. Это может показаться несколько странным чопорному британцу, но мы привыкли. Думаю, мы легко привыкнем и к остальным изменениям правописания, избавив наши перегруженные мозги от лишних проблем. Если мерилом интеллекта станет грамотность, мы все станем умнейшими людьми.
А как насчет грамматики? Кому нужны вечные и бесконечные споры о вспомогательных глаголах shall и will, местоимениях which и that? Их бесполезность совершенно очевидна! Вы только теряете время, вдалбливая в голову своего ребенка никому не нужные грамматические сведения, и добиваетесь одного — прививаете ему или ей стойкую неприязнь к английскому языку.
Если кому-то покажется, что убрать подобные тонкости — это значит уничтожить язык, могу напомнить, что английский язык до того, как за него вплотную взялись специалисты по грамматике, успел утратить род и склонение (во всех случаях, кроме местоимений). Тот факт, что мы имеем только один определенный артикль (the) для всех родов и падежей вместо трех, как французский язык (le, la, les), или шести, как немецкий язык (der, die, das, dem, den, des), несомненно, говорит в пользу английского языка, который является гибким и удивительно удобным инструментом для общения. Мы бережно охраняем свои причуды лишь потому, что привыкли к ним, а не потому, что они не являются причудами.
Необходимо освободить место для новых знаний. Не сомневаюсь, что забыть старое и бесполезное ничуть не менее важно, чем научиться новому и полезному.
Забудьте, повторяю я, забудьте побольше! Научитесь забывать!
Интересно, почему я так волнуюсь? Все равно меня никто не слушает.
<<< Назад Часть вторая О других вещах |
Вперед >>> Глава 12 Ничего считается |
- Глава 11 Забудьте об этом!
- Выходя из дома, не забудьте хорошие манеры
- По ту сторону поводка [Как понять собаку и стать понятным ей]
- 10. Адаптации организмов к условиям обитания как результат действия естественного отбора
- Часть вторая О других вещах
- От издателя
- МАКРОПОДЫ
- От сильного желания закурить к отказу от курения
- § 44. Строение клетки
- Проникновение вируса в клетку
- 1. Ренатурация ДНК с ДНК