Книга: О времени, пространстве и других вещах

Глава 14 Единица воздействия

<<< Назад
Вперед >>>

Глава 14

Единица воздействия

После переиздания моей книги «Я, робот» издательством «Даблдей & Компани» некоторые обозреватели (несомненно, обладавшие огромным интеллектом и тонким вкусом) начали отзываться о ней как о «классическом произведении», что не могло не доставить мне удовольствие.

Слово «классический» имеет то же значение, что прилагательное «первоклассный» или часто звучащее в устной речи слово «классный». Любое из них полностью совпадает с моим собственным мнением о книге «Я, робот», но я (исключительно ввиду своей скромности и щепетильности) скорее умру, чем признаю этот факт открыто. Сейчас я упоминаю об этом лишь потому, что наша беседа с вами, уважаемые читатели, является сугубо конфиденциальной.

Правда, слово «классический» имеет и второе значение, которое нравится мне намного меньше. Литераторы эпохи Возрождения часто использовали его, рассуждая о произведениях античной Греции и Рима. Следовательно, «классический» означает не только «хороший», но еще и «старый».

Что я могу сказать… Книга «Я, робот» впервые увидела свет несколько лет назад, а ее отдельные главы были написаны… Ну, это не важно. Суть заключается в том, что я решил слегка обидеться, поскольку меня посчитали достаточно старым для написания классического произведения. Поэтому следующую главу я посвятил одной из областей, где «классический» является скорее оскорблением, чем похвалой.

Понятно, что это должна быть область, где быть старым автоматически означает быть неправым. Можно с умным видом рассуждать о современном искусстве, литературе или мебели, мысленно презрительно ухмыляясь, поскольку рассматриваемые произведения не выдерживали никакого сравнения с великими творениями старых мастеров. Однако, как только речь зайдет о современной науке, оратору останется только снять шляпу и с почтением прижать ее к груди.

В первую очередь это относится к физике. Существует современная физика и классическая физика. Причем граница между ними проведена очень точно: все, что было до 1900 года, относится к классической физике, то, что было после, — к современной.

На первый взгляд такое деление выглядит весьма спорным. Напрашивается вывод, что дело лишь в необъективности наших современников, живущих в XX веке. Однако при более детальном рассмотрении выясняется, что такое деление имеет полное право на существование, оно вполне объяснимо и очень точно. Именно в 1900 году увидели свет основные труды по теоретической физике. После этого ничего подобного уже не было.

Теперь вы, наверное, уже догадались, о чем я собираюсь говорить.

Все началось с немецкого физика Густава Роберта Кирхгофа, который совместно с Робертом Вильгельмом Бунзеном (изобретателем газовой горелки Бунзена) в 1859 году заложил основы спектрального анализа. Кирхгоф открыл, что каждый элемент, раскаленный добела, излучает свет определенных частот, а пары этого элемента, подвергнутые радиационному облучению из более горячего источника, поглощают свет именно тех частот, которые он излучал ранее. Короче говоря, материал поглощает именно те частоты, которые при других условиях излучает; и излучает те частоты, которые при других условиях поглощает.

Но давайте представим некое тело, которое будет поглощать излучение всех частот, попадающих на него, причем поглощать полностью. Тогда оно ничего не будет отражать, то есть окажется абсолютно черным. Кирхгоф доказал, что абсолютно черное тело, будучи раскаленным, будет испускать излучение всех частот. Такое излучение полного спектра частот называется излучением абсолютно черного тела.

Конечно, абсолютно черных тел в природе не существует. Но в 1890 году немецкий физик Вильгельм Вин поставил довольно интересные опыты, как раз связанные с этим. Представьте, что у вас есть замкнутая полость с маленьким отверстием в непрозрачной стенке. Любое излучение, проходящее извне через отверстие, либо поглощается расположенной напротив него стенкой, либо отражается. Отраженное излучение попадает на другую стенку и опять частично поглощается. Отраженная его часть опять падает на другую стенку и т. д. Фактически излучение, попавшее внутрь сквозь отверстие, после многократного отражения больше не находит путь наружу. Получается, что отверстие поглотило излучение и, применяя ту же терминологию, ничего не отразило. Иначе говоря, мы имеем дело с абсолютно черным телом. Если полость нагреть, излучение, идущее из отверстия, должно быть излучением абсолютно черного тела и, если следовать логике Кирхгофа, содержать все частоты.

Вин приступил к изучению характеристик излучения этого черного тела. Он обнаружил, что при любой температуре присутствует широкий разброс частот, но он не является равномерным и имеет явно выраженный максимум в середине. Некая промежуточная частота испускается в большей степени, чем все остальные, более высокие или низкие. Более того, с ростом температуры максимум сдвигается в направлении более высоких частот. Если температура удваивается, частота в точке максимума тоже удваивается.

Возникает вполне закономерный вопрос: почему излучение черного тела распределяется таким образом?

Для начала давайте рассмотрим инфракрасный свет, видимый свет и ультрафиолетовый свет. Диапазон частот инфракрасного света от 100 миллиардов (100 000 000 000) до 400 триллионов (400 000 000 000 000) волн в секунду. Чтобы количество нулей не сбивало с толку, разделим приведенные выше числа на 100 миллиардов и будем считать частоты не в волнах в секунду, а «пакетами» по 100 миллиардов волн в секунду каждый. В этом случае диапазон частот инфракрасного света будет от 1 до 4000.

Аналогично получим диапазон частот для видимого света от 4000 до 8000, а для ультрафиолетового света — от 8000 до 300 000.

Теперь можно предположить, что если черное тело поглощает все излучение с одинаковой легкостью, то и отдаст его одинаково легко. Какова бы ни была его температура, его энергия может излучаться на любой частоте, а конкретный выбор частот является случайным.

А теперь представьте, что вам предстоит выбрать числа, любые случайные числа в диапазоне от 1 до 300 000. Если вы будете многократно повторять этот процесс, 1,3 % ваших чисел будет меньше 4000, еще 1,3 % попадут в диапазон между 4000 и 8000, а 97,4 % — между 8000 и 300 000.

Это все равно что сказать: черное тело будет излучать 1,3 % своей энергии в инфракрасном диапазоне, 1,3 % — на частотах видимого света и 97,4 % — в ультрафиолетовом диапазоне. При увеличении температуры, а значит, и увеличении количества энергии оно должно испускать больше энергии в каждом диапазоне, но их соотношения останутся неизменными.

Это так, если мы ограничиваемся ультрафиолетовыми частотами, считая их самыми высокими. Если же мы вспомним о существовании рентгеновского излучения, окажется, что при любой температуре почти все изменения будут происходить в ультрафиолетовом и рентгеновском диапазоне.

Английский физик лорд Рэлей (1842–1919) вывел формулу, доказывающую это. При увеличении теплового излучения черного тела возрастает и частота. Но на практике происходит следующее: после достижения пика частоты на более высоких частотах количество излучения снова снижается. Формула Рэлея была достаточно интересна, но в полной мере не отражала реальность.

Физики называли формулу Рэлея уравнением «ультрафиолетовой катастрофы»: согласно этой формуле, каждое тело, обладающее тепловой энергией для излучения, должно излучать ее практически полностью в ультрафиолетовом спектре и выше.

Но на практике ультрафиолетовой катастрофы не происходит. Излучающее тело концентрирует свою радиацию на низких частотах. При температурах ниже 1000 °C оно излучает главным образом в инфракрасном диапазоне, а при увеличении температуры до 6000 °C (температура солнечной поверхности) — в диапазоне видимого света.

Формула Рэлея была создана в полном соответствии с основополагающими принципами физической науки того времени. Его работа явилась достойным венцом того, что мы теперь называем классической физикой.

Вин вывел формулу, описывающую распределение частот излучения черного тела в диапазоне высоких частот, но не сумел объяснить, почему она работает при высоких частотах и оказывается неверной при низких.

Да, в конце XIX века настроение физиков было окрашено в черный цвет.

Но в 1899 году на небосклоне физики взошла новая яркая звезда. Речь идет о немецком ученом Максе Карле Эрнсте Людвиге Планке. Он заявил следующее.

Если изящные формулы, выведенные путем безукоризненно логичных доказательств на основе общепринятых основополагающих физических теорий, описывают совсем не то, что мы наблюдаем на практике, значит, либо доказательства не безукоризненно логичны, либо основополагающие теории ошибочны, либо не верно и то и другое.

Другими словами, если с доказательствами все в порядке, следует пересмотреть основу, на которой они строились.

В то время физики утверждали, что излучение черного тела идет с равной вероятностью на всех частотах. Планк предположил, что все обстоит как раз наоборот. Поскольку гипотеза о равной вероятности предполагает, что должно излучаться больше света высоких частот, в то время как на практике наблюдается обратное, Планк решил, что вероятность должна уменьшаться с ростом частоты.

В этом случае мы будем иметь два эффекта. Первый — это тенденция к случайности, благоприятствующая высоким частотам. Тогда излучение возрастет с ростом частоты. Второй — это новый эффект Планка, выраженный в уменьшении вероятности излучения при росте частоты. Последний будет благоприятствовать низким частотам и уменьшению излучения с ростом частоты.

В низкочастотном диапазоне первый эффект явится доминирующим, а в высокочастотном диапазоне — второй. Поэтому при излучении черного тела с ростом частоты количество излучения сначала возрастает, достигает максимума, а затем уменьшается — именно такая картина наблюдается на практике.

А что же происходит при росте температуры? Первый эффект не может быть изменен — случайность есть случайность. Но если предположить, что с ростом температуры вероятность испускания высокочастотного излучения возрастает? Тогда второй эффект при увеличении температуры будет значительно ослаблен. Излучение будет продолжать увеличиваться с возрастающей частотой до тех пор, пока не окажется во власти второго эффекта, пусть и ослабленного. Следовательно, пик излучения будет двигаться в сторону высоких частот — в точности так, как предсказал Вин.

На этой основе Планк вывел формулу, очень точно описывающую излучение черного тела как в высокочастотной, так и в низкочастотной части спектра.

Между прочим, легко говорить, что при увеличении частоты ниже вероятность излучения, но почему так? Физика того времени этот факт не объясняла. Пришлось за дело взяться Планку.

Он предположил, что энергия излучается не непрерывно (это утверждение являлось одной из основ классической физики), а отдельными порциями. А если существуют некие «атомы энергии», увеличивающиеся в размерах с ростом частоты? И свет определенной частоты не может излучаться, пока не будет собрано достаточно энергии, чтобы построить «атом энергии» такого размера, который необходим для данной частоты?

Чем выше частота, тем больше «атом энергии» и меньше вероятность ее накопления в определенный промежуток времени. Большая часть энергии будет потеряна при излучении на низких частотах, где «атом энергии» меньше, и ее легче накопить. По этой причине тело, нагретое до температуры 400 °C, будет излучать тепло только в инфракрасном диапазоне. «Атомов энергии» видимого света образуется настолько мало, что видимого свечения не будет.

С ростом температуры увеличится энергия, а также вероятность накопления достаточного ее количества для появления высокочастотных «атомов энергии». При 6000 °C основное излучение будет идти «атомами энергии» видимой части спектра, но еще более крупных «атомов энергии» ультрафиолетовой части спектра будет образовываться мало.

Но каков размер «атома энергии»? Сколько энергии он заключает в себе? Так как «сколько» являлось ключевым вопросом, Планк с восхитительной прямотой назвал «атом энергии» квантом, что на латыни означает именно «сколько».

В формуле Планка, определяющей распределение излучения черного тела, размер кванта должен быть прямо пропорционален частоте излучения. Чтобы выразить это математически, давайте обозначим размер кванта, или количество заключенной в нем энергии, символом e (энергия). Частота излучения всегда обозначается физиками греческой буквой «ню» ?.

Если энергия e пропорциональна частоте ?, тогда e равно ?, умноженной на некую постоянную величину. Эта величина получила название постоянная Планка и обычно обозначается буквой h. Формула, определяющая размер кванта для определенной частоты излучения, имеет вид:

e = h? (формула 1).

Эта формула была представлена миру в 1900 году — на грани, отделившей классическую физику от современной. В классической физике поток энергии считался непрерывным, в современной физике он представляется в виде набора квантов. Иными словами, в классической физика величина h считалась равной 0; в современной физике она имела величину отличную от 0.

Это все равно что перестать рассматривать процесс движения как плавное скольжение и начать считать его серией отдельных шагов.

Путаницы не будет, если шаги будут большими, внушительными. В таком случае движение шагом и скольжение никак не спутаешь. Но как быть, если некто семенит крошечными, микроскопическими шажками, каждый из которых производится за ничтожную долю секунды. Беглым взглядом такое движение от скольжения никак не отличишь. Только при самом тщательном наблюдении можно обнаружить, что голова идущего слегка покачивается при каждом шаге. Чем короче шаги, тем сложнее отличить их от скольжения.

Так и в физике. Все зависит от размера отдельных квантов и от того, насколько «зернистой» является энергия. Размеры квантов зависят от величины постоянной Планка. Давайте рассмотрим, что она собой представляет.

Из формулы 1 получается:

h = e/? (формула 2).

Энергию часто измеряют в эргах (см. главу 13), частоту — в единицах в секунду (1/сек).

Если эрг разделить на 1/сек, получится эрг-сек — единица измерения постоянной Планка. Единица, получаемая в результате умножения энергии на время, называется физиками единицей воздействия. То есть постоянная Планка выражается единицами воздействия.

Абсолютно все во Вселенной зависит от величины единицы воздействия. Так Планк обнаружил ту самую единицу. (Насколько я знаю, многие ученые были заняты поисками такой единицы, но зачем? Ведь Планк уже ее нашел.)

Какова же точная величина h? Планк выяснил, что она чрезвычайно мала: 0,0000000000000000000000000066256 эрг-сек, или 6,6256 ? 10-27 эрг-сек.

Попробую продемонстрировать более наглядно, насколько она мала. Человеческое тело в среднем потребляет и расходует 2500 ккал в день. 2500 ккал = 2 500 000 кал.

Поэтому для человека 1 калория — величина очень маленькая, равная 1/2 500 000 дневных запасов каждого из нас. Это количество энергии, содержащееся в 1/113 000 унции сахара.

А теперь представьте, что перед вами книга весом 1 фунт. Вам необходимо поднять ее и поставить на полку, находящуюся на высоте 3 фута от пола. Для этого потребуется затратить энергию, равную приблизительно 1 калории.

Представьте, что величина постоянной Планка была бы другого порядка — например, 1 кал-сек. Тогда наша Вселенная стала бы воистину странным местом. Для того чтобы поднять книгу, вам пришлось бы ждать, пока будет накоплено достаточное количество энергии для создания кванта гигантских размеров, необходимого для столь масштабного действия. Когда же энергия накопится, книга внезапно окажется в трех футах от пола.

1 кал-сек = 41 850 000 эрг-сек, и, поскольку постоянная Планка составляет ничтожную долю одной эрг-секунды, 1 кал-сек = 6 385 400 000 000 000 000 000 000 000 000 000 h = 6,3854 ? 1033 h. Иначе говоря, в 1 калории-секунде содержится невероятное количество постоянных Планка.

Следовательно, любое действие, и такое, как подъем 1-фунтовой книги, выполняется при помощи бесчисленного количества шажков. Но они такие маленькие, что все движение неотличимо от беспрерывного скольжения.

Когда Планк в 1900 году впервые представил общественности свою квантовую теорию, она почти не вызвала к себе интереса. Квант был воспринят как понятие придуманное, так сказать, возникшее из воздуха. Даже сам Планк пребывал в сомнении, но не по поводу формулы, описывающей излучение черного тела, которая отлично работала. Он сомневался в своем детище — кванте, эту формулу объяснявшем.

А затем наступил 1905 год, и 26-летний физик-теоретик Альберт Эйнштейн опубликовал сразу пять научных работ, каждой из которых было достаточно, чтобы завоевать ему славу звезды первой величины на небосводе физической науки.

В двух работах он разработал теоретические основы «броуновского движения» и случайно создал механизм определения действительных размеров атомов.

Третья работа была посвящена «фотоэлектрическому эффекту». В ней было ясно показано, что, хотя классическая физика не в состоянии его объяснить, с этим делом прекрасно справляется квантовая теория Планка.

Последнее вызвало откровенное недоумение в среде физиков. Планк ввел понятие кванта исключительно для того, чтобы описать излучение абсолютно черного тела, а оказалось, что его теория заодно объясняет и фотоэлектрический эффект, то есть нечто совершенно другое! А раз кванты оказались уместны в двух различных областях, вполне вероятно, что они действительно существуют.

(Четвертая и пятая работы Эйнштейна предлагали новый взгляд на Вселенную, который мы теперь называем «Специальной теорией относительности». Именно в них он впервые привел формулу e = mc2. См. главу 13.)

Работы по относительности были продолжены, и в 1915 году появилась общая теория относительности, благодаря которой имя Эйнштейна известно далеко за пределами мира физики. Забавно, но Нобелевской премии (которую ученый получил в 1921 году) он был удостоен не за теорию относительности, а за работы по фотоэлектрическому эффекту.

Величина h настолько мала, что в повседневной жизни мы вполне можем ею пренебречь. В масштабных событиях, происходящих ежедневно, потоки энергии могут считаться непрерывными. В первом приближении.

Однако, если мы имеем дело с небольшими изменениями энергии, квантовые шаги, посредством которых эти изменения происходят, становятся больше. Так, лестница, состоящая из ступенек высотой 1 мм и глубиной 3 мм, для человека ростом (1 футов покажется просто шероховатой наклонной плоскостью. А если человек имеет рост муравья, каждая из этих ступенек станет для него серьезным препятствием, на преодоление которого потребуется затратить изрядное усилие. А для человека, уменьшившегося до размеров бактерии, они станут непреодолимыми горами.

Точно так же, когда мы пытаемся проникнуть во внутренний мир атома, квантовые ступеньки становятся гигантскими. Об атомной физике невозможно говорить в терминах физики классической. Даже в первом приближении.

Первым ученым, осознавшим это, был датский физик Нильс Бор. В 1913 году Бор доказал, что, если электрон поглощает энергию, он должен поглотить сразу целый квант, причем для электрона квант — это много. Поэтому после этого он резко меняет свое отношение к остальной части атома.

Бор изобразил электрон вращающимся вокруг атомного ядра по фиксированной орбите. Поглотив квант энергии, он неожиданно оказывается на орбите, расположенной дальше от ядра, причем это перемещение рядовое, без промежуточных этапов.

Поскольку, по Бору, электрон мог двигаться только по определенным орбитам, атом мог поглотить только кванты определенного размера, достаточно большие, чтобы электрон переместился с одной допустимой орбиты на другую. Если же электроны перемещаются в обратном направлении, они излучают энергию квантами. Причем частота излучения определяется размером кванта, который испускается при переходе электрона с одной орбиты на другую.

Так получила разумное объяснение наука спектроскопия. Люди начали понимать, почему каждый элемент (состоящий из атомов одного типа, имеющих один тип энергетических взаимоотношений между электронами этого атома) испускает излучение только определенных частот, будучи раскаленным. Они также поняли, почему вещество, способное поглощать излучение определенных частот, может также испускать излучение тех же частот при других условиях.

Короче говоря, Кирхгоф затронул проблему, но его эмпирические выводы получили теоретическое объяснение много позже.

Первая модель атома, предложенная Бором, была очень простой. Но он не прекращал своих исследований, которые позже были продолжены его последователями, и постепенно представление об атоме менялось, модель также становилась более сложной. Появилась возможность точнее объяснить данные, полученные опытным путем. В 1926 году австриец Эрвин Шрёдингер создал математический аппарат, способный описать движение частиц внутри атома на основе квантовой теории. Его работа получила название квантовой механики, в противоположность существовавшей классической механике, основанной на трех законах Ньютона. Именно квантовая механика является основой современной физики.

<<< Назад
Вперед >>>

Генерация: 4.251. Запросов К БД/Cache: 3 / 1
Вверх Вниз