Книга: Старение и увеличение продолжительности жизни
Мембранно-геномные механизмы
<<< Назад Функция клетки |
Вперед >>> От нейрона до мозга |
Мембранно-геномные механизмы
Системный анализ — это не просто поиск суммы возрастных изменений, а установление взаимосвязи между ними, осуществляемой по принципу саморегуляции. С возрастом изменяется связь между геномом клетки и состоянием ее мембраны, и это становится важным механизмом старения. При старении изменяется синтез мембранных белков. Н. С. Верхратский показал, что в мембранах клеток печени суммарное обновление белка у старых животных на 35 % меньше, чем у взрослых. За этой общей величиной возрастных изменений синтеза белков скрываются неравномерные сдвиги в образовании различных белковых молекул. Белки мембраны — это расположенные в ней ферменты, ионные каналы, рецепторы. Вот почему изменение их синтеза существенно влияет на функцию клеток. Так, сдвиги в синтезе белков влияют на состояние клеточной мембраны, а ее изменение нарушает деятельность клетки.
В нашей лаборатории был открыт важный общефизиологический механизм связи между активностью генома клетки и состоянием клеточной мембраны. Речь идет о закономерности, объясняющей многие механизмы деятельности клетки. В опытах на различных клетках — нервных, печеночных, миокардиальных, скелетно-мышечных — было показано, что при активации в них генома, биосинтеза белка возникает гиперполяризация клеточной мембраны, т. е. растет величина ее электрического заряда, МП. Рост величины МП отмечался при активации биосинтеза белка различными факторами — гормонами, медиаторами, регенерацией, кровопотерей и др. О связи гиперполяризации с биосинтезом белка свидетельствует то, что введение веществ, препятствующих активации генома, ингибиторов биосинтеза белка (актиномицин, оливомицин, пуромицин и др.), предупреждает развитие гиперполяризации (рис. 16).
Рис. 16. Изменение связи между электрическими свойствами клеточной мембраны и биосинтезом белка в клетке в старости.
А — влияние актиномицина-D на развитие гиперполяризации мышечных волокон, вызываемой инсулином, 1 — инсулин; 2 — актиномицин-D; 3 — инсулин + актиномицин-D. К — контроль. Б — рост интенсивности биосинтеза РНК (1) и белка (2) в печени при воздействии гиперполяризации. Белые столбики — взрослые животные, заштрихованные — старые
Все эти вещества блокируют разные этапы синтеза белка: одни — считывание информации с ДНК, другие — сборку белка в клеточной цитоплазме — в рибосомах. Они были использованы в дозах, которые сами по себе не изменяют электрического заряда клеточной мембраны, однако предупреждали его рост при активации синтеза белка.
Увеличение электрического заряда клеточной мембраны — гиперполяризация — изменяет многие важные свойства клетки: проницаемость многих веществ, включая и аминокислоты, нужные для построения белков: возбудимость клетки, энергетический потенциал клетки и др. Стойкое повышение МП тормозит деление клетки. В клетках старых животных возможная величина гиперполяризации меньше, чем у взрослых, и это сказывается на многих сторонах деятельности клеток. Кроме того, у старых животных меньшие дозы ингибиторов биосинтеза белка подавляют развитие гиперполяризации, т. е. в старости связь эта менее прочная.
Можно предполагать, что развитие гиперполяризации клеток связано с активацией биосинтеза определенного белка, влияющего на состояние ионных каналов. Об этом свидетельствуют результаты наших опытов о возможности перенесения эффекта с одной группы клеток на другие.
Нами было показано, что в клетке существует важный механизм саморегуляции: активация биосинтеза белка вызывает гиперполяризацию клеточной мембраны, а возникшая гиперполяризация по принципу обратной связи подавляет биосинтез белка. Система эта имеет очень важное значение, так как стабилизирует обмен и функцию клеток, не "позволяет" им безгранично делиться, активизировать биосинтез белка.
Мы показали это в следующей постановке опытов. Различными факторами в клетке активировался биосинтез белка, и на этом фоне через специальный электрод повышался заряд клеточной мембраны, т. е. развивалась ее гиперполяризация. Возникшая гиперполяризация сдерживала рост биосинтеза белка. Важно то, что сдерживающее, подавляющее влияние в большей мере выражено у старых животных. Это один из механизмов, ограничивающих систему биосинтеза белка в старости.
Возможны и принципиально другие условия в клетке — гиперполяризация может возникать первично, без предшествующей активации генетического аппарата синтеза белка. В организме это достигается благодаря действию ряда физиологически активных веществ на мембраны, на состояние ее каналов, транспорт ионов. В опытах электрическим током воспроизводили рост величины МП. Различие в двух сериях опытов состояло в том, что в первом случае гиперполяризация вызывалась на фоне высокого синтеза белка; во втором — на фоне его нормального уровня. Во втором случае возникала резкая стимуляция генетического аппарата — росло содержание активного хроматина, синтез РНК и белков (рис. 16). У старых животных это активирующее влияние на все звенья системы синтеза белка выражено слабее, чем у взрослых. Следовательно, в зависимости от исходного состояния клетки гиперполяризация может активировать или подавлять синтез белка.
Итак, активирующие влияния с мембраны клетки на биосинтез белка у старых животных выражены меньше, чем у взрослых, а подавляющие, угнетающие — больше. Такой тип мембранно-геномных отношений может стать одной из причин ограничения возможностей биосинтетических систем, одним из механизмов старения. Говорят, что всякая научная истина проходит три этапа: на первом — "этого не может быть", на втором — "в этом что-то есть", а на третьем — "кто этого не знает". Хотелось бы, чтобы представление о мембранно-геномном механизме старения побыстрее прошли все эти три этапа.
<<< Назад Функция клетки |
Вперед >>> От нейрона до мозга |
- Генорегуляторная гипотеза
- Энергетические процессы
- Последовательность старения клеток
- Структура клетки
- Функция клетки
- Мембранно-геномные механизмы
- От нейрона до мозга
- Вегетативная нервная система
- Нейронный транспорт веществ
- Нейрогормональный контроль
- Местные механизмы регуляции
- Реакции объектов регуляции
- Обратные связи
- Старение и болезни
- 8.6.4. Механизмы динамики численности
- Механизмы гормональных влияний на поведение
- 2. Клеточные механизмы мозга
- Глава 3. Сравнительная геномика: эволюционирующие геномные ландшафты
- Глава 2. От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции
- Характерные геномные профили бактерий и архей с различными стилями жизни и неизоморфное отображение генного и функционал...
- Геномные ландшафты: распределение эволюционных ограничений по разным классам сайтов в геноме
- 2. Клеточные механизмы иммунитета
- 4. Другие механизмы возникновения различий
- Глава 3 Механизмы зарождения жизни на Земле
- 10.2. Этические комитеты: статус, механизмы создания, функции и задачи
- Глава 9 Механизмы копирования РНК и начало РНК-мира