Книга: Как работает Вселенная: Введение в современную космологию
3.7. Поливерсум и антропный принцип
<<< Назад 3.6.1. Модели инфляции |
Вперед >>> 3.7.1. Кому во Вселенной жить хорошо? |
Сделаем еще одну оценку. Хотя у нас нет никаких оснований предполагать какой-то определенный размер Вселенной в момент начала инфляции, возьмем «с потолка» размер в 1 мм. Он превосходит характерный размер видимой части Вселенной на момент начала инфляции (10–26 м) в 1023 раз. Соответственно, в объеме Вселенной помещается около (1023)3 = 1069 объемов того участка, из которого выросла наблюдаемая часть Вселенной. Поэтому в настоящий момент во Вселенной насчитывается приблизительно 1069 частей Вселенной, не связанных друг с другом причинно и не наблюдаемых друг из друга. Даже если вместо 1 мм мы возьмем 1 микрон (10–6 м) или даже 1 ангстрем (10–10 м), то все равно мы получим гигантское количество независимых друг от друга частей Вселенной, соответственно 1060 или 1048.
Подобные соображения привели к представлению о том, что во Вселенной может действительно существовать гигантское количество независимых частей. Для описания этой идеи вместо английского слова «Universe», обозначающего Вселенную, используются другие слова: «Multiverse» или «Omniverse». В этих словах приставка uni-, означающая «единственный», заменена приставкой «multi», обозначающей «много», и «omni», обозначающей «все». В данной книге мы будем использовать термин «Поливерсум», который использовал известный польский фантаст Станислав Лем.
Интересные результаты получились при объединении идей инфляции и спонтанного нарушения симметрии, за открытие которой Еитиро Намбу получил Нобелевскую премию по физике в 2008 г. Идея спонтанного нарушения симметрии используется в физике элементарных частиц. С ней напрямую связан так называемый бозон Хиггса, обнаруженный на Большом адронном коллайдере в Швейцарии[58].
Дадим очень краткое описание этой идеи. Обычно в физике считается, что симметричные уравнения должны иметь симметричные решения. Например, шарик, положенный в траншею с профилем, показанный на рис. 3.5, окажется в самой нижней ее точке. При этом мы считаем, что от координаты вдоль траншеи ничего не меняется. Гравитационный потенциал симметричный, полученное решение тоже симметрично. Если же профиль траншеи будет таким, как показано на рис. 3.7, то симметричное решение будет неустойчивым. В этом случае шарик случайным образом попадет либо в левую, либо в правую яму. Таким образом, будет реализовано одно из двух возможных несимметричных решений.
Если мы говорим не о скалярном, а о векторном поле, имеющем направление, то число возможных несимметричных решений будет бесконечным. Представьте, что мы имеем дело не с траншеей, а с лункой, полученной в результате вращения профиля, изображенного на рис. 3.7, вокруг вертикальной оси. Понятно, что шарик скатится и попадет в какую-то точку на круговой канаве, но неизвестно, в какую именно. Другой пример: на горизонтальной поверхности мы ставим вертикально длинную тонкую палку. Понятно, что она упадет, но в какую сторону – мы не знаем. Вы можете проверить это в домашних условиях, пытаясь поставить карандаш вертикально на его острие.
В некоторых теориях физики элементарных частиц возникают симметрии, которые не реализуются в реальном мире. Теория предсказывает безмассовые частицы, а в реальности они массивны. Теория предсказывает равенство масс двух частиц, а в реальности одна тяжелее другой. Один из вариантов заключается в том, что симметрия существует, но спонтанно нарушена. Когда мы обсуждали переход Вселенной из состояния с «ложным» в состояние с «истинным» вакуумом, мы вводили некоторое скалярное поле, от которого зависела плотность энергии вакуума. Если теперь мы представим, что от этого же поля зависят и параметры элементарных частиц, причем при значении ? = 0 достигается симметрия, предсказываемая теориями, то в результате перехода Вселенной в состояние со значением ? ? 0 эта симметрия нарушается. Причем мы не можем заранее сказать, в какую именно сторону. Если же вместо скалярного поля ? присутствовало какое-то векторное поле, которое характеризуется не только величиной, но и направлением, то количество возможных способов нарушения симметрии становится бесконечным.
Итак, предположим, что инфляция связана с переходом от «ложного» вакуума к «истинному», который, в свою очередь, связан со спонтанным нарушением симметрии. Более того, предположим, что в разных частях Вселенной, не связанных причинно, результаты спонтанного нарушения симметрии могут быть разными. Части Вселенной, выросшие из этих кусков, будут иметь разное нарушение симметрии. Это означает разную физику, а именно разные константы взаимодействия, разные свойства элементарных частиц, в экстремальном случае – даже разное число измерений пространства. Возвращаясь к понятию «Поливерсум», мы получим не просто гигантское количество независимых друг от друга частей Вселенной, но частей Вселенной с разной физикой.
Может показаться, что это – результат буйства фантазии. Однако природа позаботилась о том, чтобы у нас была очень простая и наглядная модель Поливерсума. Кусок железа или другого ферромагнетика состоит из различных участков, называемых доменами, внутри которых все магнитные моменты атомов выстроены параллельно. В другом домене они тоже выстроены параллельно, но в другом направлении. Границы между доменами – так называемые доменные стенки – имеют дополнительную плотность энергии по сравнению с самими доменами. Если железо не находилось во внешнем магнитном поле, то направление магнитных моментов внутри доменов можно считать результатом спонтанного нарушения симметрии. Доменная структура ферромагнетиков и сегнетоэлектриков известна в физике более сотни лет. Представим, что Вселенная тоже состоит из отдельных доменов, внутри которых физические законы постоянны. Однако в разных доменах они различны. Их разделяют доменные стенки, имеющие дополнительную плотность энергии. Размеры наблюдаемой части Вселенной (диаметр космологического горизонта) существенно меньше размеров таких доменов. Остается только пожалеть, что физикам-экспериментаторам никогда не удастся использовать свои приборы для изучения объектов из другого домена.
В такой картине Поливерсума новыми гранями заиграл так называемый антропный принцип. Этот принцип, имеющий прямое отношение к космологии, относится не столько к науке, сколько к философии. Более того, ссылки на него можно найти не только в научной работе или философском трактате, но и в богословских трудах. Опишем кратко его основные положения.
Многие ученые не раз писали, что разумная жизнь, представленная во Вселенной по крайней мере человечеством, оказалась возможна благодаря серии невероятно удачных обстоятельств. Небольшое изменение параметров взаимодействия или масс элементарных частиц привело бы к тому, что не только была бы невозможна разумная жизнь, но и вся картина мироздания была бы совершенно иной. Естественно возник вопрос: почему Вселенная так приспособлена для появления разумной жизни? Ответ богословов нетрудно предвидеть. Но физикам очень трудно было предложить свой вариант ответа.
На помощь пришли следующие философские соображения. Для того чтобы обсуждать вопрос удобства нашей Вселенной для создания разумной жизни, нужна не только Вселенная, удовлетворяющая данному критерию, но и собеседники, которые это обсуждают. Другими словами, если Вселенная плохо приспособлена для появления разумной жизни, в ней не появятся разумные существа и, соответственно, некому будет пожаловаться на ее плохое устройство. То, что вы читаете эту книгу, связано не только с тем, что автор ее написал, а вы решили прочесть, но и с тем, что Вселенная со всеми ее взаимодействиями, константами и другими параметрами сделала возможным существование и авторов, и читателей. Если у нас есть много вариантов строения Вселенной, то обсуждение этого вопроса возможно только в тех из них, в которых есть кому его обсуждать.
С научной точки зрения важно наличие большого числа возможностей. До появления теории инфляции антропный принцип пытались применить к вопросу, почему плотность Вселенной не сильно отличается от критической плотности. Чтобы обеспечить большое число возможных вариантов, выбирали одну из двух возможностей: либо Вселенная испытывает большое, возможно очень большое, количество циклов рождения и уничтожения, либо в результате квантовых флуктуаций рождается очень большое число вселенных, независимых друг от друга. В первом случае антропный принцип позволяет выбрать удачный цикл, во втором случае – подходящую вселенную.
Идея Поливерсума с доменной структурой позволяет реализовать внутри него много разных возможностей, практически независимо друг от друга. И если то, что единственная Вселенная оказалась удачно устроенной, вызывало удивление, то куда меньшее удивление вызывает то, что мы можем найти хотя бы один подходящий кусок Вселенной из огромного количества вариантов с разными физическими законами и разными параметрами взаимодействия.
Невероятно сложно сорвать джекпот, купив один лотерейный билет, но это точно получится, если ты купил 1060 билетов.
<<< Назад 3.6.1. Модели инфляции |
Вперед >>> 3.7.1. Кому во Вселенной жить хорошо? |
- 2.4. Принципы экологической классификации организмов
- Принципы гормональной регуляции
- Принцип Оккама
- Основные принципы биоритмологии
- Репликация цифровых носителей информации: центральный принцип биологии и необходимое и достаточное условие эволюции
- Приложение II. Эволюция космоса и жизни: вечная инфляция, теория «мира многих миров», антропный отбор и грубая оценка ве...
- Другие (квази)ламарковские системы, функционирующие по принципу CRISPR
- Кибернетика – наука о принципах управления
- Принцип относительности движения Г. Галилея.
- Антропный принцип: сильный или слабый.
- Глава 8 Биогенная миграция химических элементов и биогеохимические принципы
- 8.2. Биогеохимические принципы