Книга: Как работает Вселенная: Введение в современную космологию
3.4. Космологический горизонт
<<< Назад 3.3. Эволюция ранней Вселенной |
Вперед >>> 3.5. Расстояние до космологического горизонта |
3.4. Космологический горизонт
Космологический горизонт описывает максимально большое расстояние до астрономических объектов, которые мы можем увидеть на небе или получить от них какую-либо информацию любыми способами, включая гравитационные и электромагнитные волны или потоки каких-либо частиц. Любые сигналы от более удаленных объектов не могут достигнуть Земли за время существования Вселенной. Существование космологического горизонта является результатом комбинации двух факторов, а именно конечности скорости света и существования Большого взрыва.
Надо понимать, что чем дальше от нас находится объект, тем дольше от него идет свет и тем на более ранней стадии существования мы его наблюдаем. Таким образом, наиболее далекие из принципиально наблюдаемых объектов должны были испустить свет в момент рождения Вселенной. Этот свет шел бы до нас 13,8 млрд лет, однако из-за расширения Вселенной эти объекты находятся не на расстоянии 13,8 млрд св. лет, а на расстоянии втрое большем, т. е. около 40 млрд св. лет. Соответствующий расчет приведен в разделе 3.5. Более далекие объекты просто не видны, они находятся за космологическим горизонтом – границей видимой части Вселенной. Если на объектах, лежащих за космологическим горизонтом, существует наблюдатель, то он также не может получить информацию от нас. Это – еще одно решение парадокса Ольберса: мы можем наблюдать свет только от объектов в видимой части Вселенной с конечным, хотя и очень большим числом звезд.
Космологический горизонт соответствует максимальному расстоянию, от которого свет может дойти до нас. Вспоминая раздел 1.2, мы видим, что он соответствует краю нашего светового конуса прошлого, как показано на рис. 3.3. Все, что ограничено космологическим горизонтом, находится в нашем абсолютном прошлом, а все, что за ним, находится во внешней области. Естественно, мы можем получить любую информацию только от объектов внутри светового конуса.
В отличие от рис. 1.5, мы имеем дело не с плоским пространством-временем Минковского, а с реальной Вселенной, которая имеет четкую границу времени в прошлом – Большой взрыв. На рис. 3.3 по вертикальной оси отложено время, вершина соответствует текущей эпохе, принимаемой за начало отсчета, а Большой взрыв находится на уровне –13,8?109 лет. По горизонтальной оси отложено радиальное расстояние от нас. Так как нас интересует качественный, а не количественный анализ, мы используем такой переменный масштаб вдоль горизонтальной оси, чтобы край светового конуса представлял из себя прямую линию.
Из этого графика мы можем сделать три важных вывода. Во-первых, космологический горизонт конечен. Во-вторых, он увеличивается со временем, и объекты, которые находятся за его пределами, в конечном итоге окажутся в нем. В-третьих, мы видим отдаленные объекты на более ранних стадиях их эволюции, чем близкие.
На самом космологическом горизонте во всех направлениях мы должны были бы наблюдать момент рождения Вселенной, поскольку свет от него как раз дошел бы до нас за время существования Вселенной. Однако на начальных стадиях своего существования Вселенная была заполнена плазмой и поэтому была непрозрачна для света. Только после рекомбинации Вселенная стала прозрачной и практически все время оставалась таковой. Поэтому самое древнее, что мы можем наблюдать во Вселенной, – это свет, излученный в момент рекомбинации, т. е. реликтовое излучение.
Многих интересует вопрос о том, бесконечна ли Вселенная. Решения Фридмана уравнения Эйнштейна в отсутствие космологической постоянной описывают три возможных типа Вселенной, один из которых в любой момент эволюции Вселенной имеет конечный объем. Однако в любом случае мы видим только часть Вселенной, ограниченную космологическим горизонтом, поэтому вопрос о том, конечна или бесконечна недоступная для нас часть Вселенной, является чисто философским, поскольку мы никогда не сможем узнать, что происходит за пределами космологического горизонта.
<<< Назад 3.3. Эволюция ранней Вселенной |
Вперед >>> 3.5. Расстояние до космологического горизонта |
- 3.5. Расстояние до космологического горизонта
- Биполярные и горизонтальные клетки
- От горизонтального переноса генов к половому размножению
- Горизонтальный перенос генов и симбиоз
- Микробам — горизонтальный перенос, высшим организмам — половое размножение
- Горизонтальный обмен генами
- Глава 5. Сетевая геномика мира прокариот: вертикальные и горизонтальные потоки генов, мобиломы и динамика пангеномов
- Глава 12. Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический...
- Горизонтальный перенос генов – определяющий процесс в эволюции прокариот
- Горизонтальный перенос генов, универсальные законы геномики и хорошо перемешанный резервуар прокариотических генов
- Древовидная эволюция или неслучайный горизонтальный перенос генов?
- Горизонтальный перенос генов: важная ламарковская составляющая