Книга: Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Первые альтруисты

<<< Назад
Вперед >>>

Первые альтруисты

По-видимому, уже на самых ранних этапах развития прокариотной биосферы микробам приходилось сотрудничать друг с другом, объединяться в сложные коллективы и сообща решать стоящие перед ними биохимические «задачи». Эффективность и устойчивость микробных сообществ повышались за счет развития средств коммуникации между микробами. Развивались системы химического «общения». Выделяя в окружающую среду различные вещества, микроорганизмы сообщали соседям о своем состоянии и влияли на их поведение. Тогда же зародился и альтруизм — способность жертвовать собственными интересами на благо сообщества.

Возможно, многим читателям покажется сомнительным утверждение о существовании сложной социальной жизни, коммуникации и тем более альтруизма у микробов. Чтобы не быть голословным, приведу несколько фактов из жизни самой обычной, повсеместно встречающейся бактерии.

Бактерия Bacillus subtilis — широко распространенный почвенный микроб, относящийся к числу наиболее изученных. Геном «тонкой бациллы» (так переводится с латыни название этого микроорганизма) прочтен еще в 1997 году, и функции большинства генов в общих чертах известны.

Этого, однако, недостаточно, чтобы понять механизмы, управляющие сложным поведением бациллы. Этот микроб, например, умеет при необходимости отращивать жгутики и приобретать подвижность; собираться в «стаи», в которых передвижение микробов становится согласованным; принимать «решения» на основе химических сигналов, получаемых от сородичей. При этом используется особое «чувство кворума» — нечто вроде химического голосования, когда определенное критическое число поданных сородичами химических «голосов» меняет поведение бактерий. Мало того, В. subtilis способна собираться в многоклеточные агрегаты, по сложности своей структуры приближающиеся к многоклеточному организму.

В критической ситуации (например, при длительном голодании) бациллы превращаются в споры, устойчивые к неблагоприятным воздействиям, чтобы дождаться лучших времен. Но превращение в спору для В. subtilis — процесс дорогостоящий, требующий активизации около 500 генов, и эта мера приберегается на самый крайний случай. Ну а в качестве предпоследней меры в голодные времена микроб прибегает к убийству своих сородичей и каннибализму. Если, конечно, сородичей вокруг достаточно много, то есть плотность популяции высока. Если нет, тогда делать нечего, приходится превращаться в споры натощак.

Ученые выяснили, что при голодании у В. subtilis срабатывает особый генный переключатель, который может находиться лишь в одном из двух дискретных состояний (включено/выключено). «Переключатель» состоит из ключевого гена-регулятора Spo0A и нескольких других генов, которые взаимно активируют друг друга по принципу положительной обратной связи.

Активизация Spo0A приводит к целому каскаду реакций, в том числе к производству клеткой токсина SdpC, убивающего тех бацилл, у которых «переключатель» выключен. Однако хитрость состоит в том, что голодание приводит к активизации Spo0A только у половины микробов. Погибшие клетки распадаются, высвободившиеся из них органические вещества всасываются убийцами. Если никаких перемен к лучшему так и не произойдет, они, по крайней мере, будут превращаться в споры сытыми.

До сих пор было неясно, почему токсин убивает только тех бацилл, которые его не выделяют (то есть тех, у кого Spo0A не активирован). И вот что выяснилось[23]. На мембране бацилл сидит защитный белок SdpI, выполняющий сразу две функции. Во-первых, он защищает клетку от токсина SdpC (просто хватает молекулы токсина и держит, не дает им ничего делать). Во-вторых, молекула белка SdpI, схватившая молекулу токсина, изменяется таким образом, что другой ее конец (торчащий из внутренней стороны мембраны) хватает и удерживает молекулы белка SdpR, функция которого состоит в том, чтобы блокировать производство защитного белка SdpI.

Таким образом, схватывание защитным белком молекулы токсина приводит к инактивации белка, тормозящего производство защитного белка. То есть чем больше будет токсина, тем больше клетка будет производить защитного белка. А как только токсин в окружающей среде закончится, молекулы SdpR перестанут инактивироваться, и производство защитного белка остановится.

По молекулярно-биологическим меркам это крайне простой регуляторный каскад, проще некуда. Так бациллы защищаются от собственного токсина. А почему же бациллы с выключенным Spo0A оказываются незащищенными? Оказывается, синтез спасительного SdpI у них блокируется еще одним белком — AbrB. Отключить AbrB можно только путем включения Spo0A, поэтому клетки с выключенным Spo0A просто-напросто обречены.

Самым интересным тут является даже не каннибализм бацилл-убийц, а альтруизм бацилл-жертв, которые отключают себе все, что только можно, лишь бы помочь своим сородичам себя съесть.

Казалось бы, естественный отбор должен способствовать закреплению в потомстве признака «Spo0A включается при голодании» и отбраковывать особей с противоположным признаком. Действительно, ведь первые выживают и оставляют потомство, а вторые погибают, и так раз за разом, при каждой очередной голодовке. Однако генный «переключатель» упорно остается настроенным так, чтобы включаться при голодовке только в 50% случаев. Ведь если все особи в популяции захотят стать каннибалами, а жертвами — никто, то все мероприятие потеряет смысл, есть будет некого. Интересы общества оказываются выше личных, и каннибализм одних расцветает лишь благодаря альтруизму других.

<<< Назад
Вперед >>>

Генерация: 0.482. Запросов К БД/Cache: 0 / 0
Вверх Вниз