Книга: Черные дыры и вселенная
Первые пять минут
<<< Назад Путешествие в далекое прошлое |
Вперед >>> Сколько гелия в природе? |
Первые пять минут
В известной песенке поется:
Первые пять минут в жизни нашей Вселенной… Они определили основные ее особенности, в том числе и те, которые проявились миллиарды лет спустя, в наше время.
Процессы, которые последовали за уже рассмотренными нами первыми мгновениями и которые происходили в эти минуты, полные драматизма и действия грозных ядерных сил, определили существенные черты химического состава сегодняшней Вселенной.
Благодаря этим процессам звезды обладают достаточным запасом ядерной энергии. Поэтому то, что звезды светят, также есть следствие разгула стихий Вселенной в первые пять минут расширения.
Звезды и другие небесные тела возникли из небольшой примеси обычного вещества, о которой мы на время «забыли», рассматривая в предыдущем разделе фотоны и пары частиц — античастиц.
Вернемся теперь к этой небольшой примеси обычного вещества, которое находится в первые доли секунды после начала расширения в «кипящем котле» нейтрино и антинейтрино, электронов и позитронов и световых квантов. Оказывается процессы, в которых участвует обычное вещество, чрезвычайно чувствительны к тем условиям, которые господствовали в первые секунды расширения. Эти процессы обусловили химический состав вещества, из которого много позже, уже в эпоху, близкую к нашей, формировались галактики и звезды. Поэтому химический состав звездного вещества служит чувствительнейшим индикатором физических условий в начале космологического расширения.
Рассмотрим процессы, в которых участвует обычное вещество. В каком состоянии оно находится?
Прежде всего при температуре свыше 10 миллиардов градусов не может быть нейтральных атомов — все вещество полностью ионизовано и является высокотемпературной плазмой. Более того, при подобной температуре не могут существовать сложные атомные ядра. Сложное ядро было бы моментально разбито окружающими энергичными частицами. Поэтому тяжелыми частицами вещества оказываются нейтроны и протоны. Эти частицы подвергаются воздействию «кипящего котла» энергичных электронов, позитронов, нейтрино и антинейтрино.
Взаимодействие с этими частицами заставляет нейтроны и протоны быстро превращаться друг в друга. Эти реакции устанавливают равновесие между нейтронами и протонами. Когда температуры достаточно велики, больше ста миллиардов градусов, концентрации нейтронов и протонов будут примерно равны.
В ходе расширения Вселенной с понижением температуры становится все больше протонов и меньше нейтронов. Равенство концентраций нарушается, потому что масса нейтрона больше массы протона и образование протона энергетически более выгодно, а значит, вероятность образования протона больше, чем нейтрона. Если бы реакции продолжались и после нескольких секунд с начала расширения, то через несколько десятков секунд количество нейтронов стало бы ничтожным.
Но скорость реакции резко зависит от температуры. С убыванием ее уменьшается скорость этих реакций, и они почти прекращаются после первых секунд расширения. Относительное содержание нейтронов «застывает» на значении около 15 процентов от всех тяжелых частиц.
После этого, когда температура падает до миллиарда градусов, становится возможным образование простейших сложных ядер. Теперь энергии квантов и других частиц не хватает для того, чтобы разбивать сложное ядро. Все имеющиеся нейтроны захватываются протонами, давая сначала дейтерий, а потом реакции с участием дейтерия приводят в конце концов к ядрам атома гелия. Образуется также очень небольшое количество изотопа гелия-3, дейтерия и лития.
Более сложных ядер в этих условиях практически совсем не образуется. Дело в том, что образование таких элементов в сколько-нибудь значительных количествах может происходить в результате парных столкновений ядер и частиц, уже имеющихся. Это значит, что образование более сложных ядер может начинаться при столкновении ядер гелия-4 с нейтронами, протонами или с теми же ядрами гелия-4. Но эти столкновения не ведут к образованию сложных ядер с относительной атомной массой 5 или 8, потому что таких устойчивых ядер нет!
Указанные причины ведут к тому, что синтез элементов в начале расширения ограничивается только легкими элементами и заканчивается примерно через 300 секунд после начала расширения, когда температура падает ниже миллиарда градусов и энергия частиц уже недостаточна для ядерных реакций. Реакции, приведшие к образованию гелия, подобны тем, что происходят при взрыве водородной бомбы. Образование элементов тяжелее гелия происходит в звездах уже в нашу эпоху. В звездах вещество находится достаточно долго, и даже не очень быстрые реакции успевают пройти. Синтез элементов тяжелее железа происходит во взрывных процессах (во вспышках сверхновых звезд). Газ, прошедший стадию нуклеосинтеза в звездах, затем частично выбрасывается из них в окружающее пространство при медленном истечении с поверхности звезд и при взрывах. Из этого газа потом формируются звезды последующих поколений и другие небесные тела.
Вернемся к синтезу легких элементов в начале космологического расширения. Так как почти все нейтроны пошли на создание атомов гелия, то нетрудно подсчитать, сколько образуется гелия. Каждый нейтрон входит в состав ядра гелия-4 в паре с протоном, поэтому доля гелия по весу будет равной удвоенной концентрации нейтронов, то есть 30 процентов.
Итак, по истечении примерно пяти минут с начала расширения вещество состоит на 30 процентов из ядер атомов гелия и на 70 процентов из протонов — ядер атома водорода. Такой химический состав вещества остается в дальнейшем неизменным, вплоть до образования галактик и звезд, когда процессы нуклеосинтеза начинают идти в недрах звезд.
Подтверждают ли наблюдения вывод о химическом составе дозвездного вещества?
<<< Назад Путешествие в далекое прошлое |
Вперед >>> Сколько гелия в природе? |