Книга: От атомов к древу. Введение в современную науку о жизни
Интроны и ядро
<<< Назад Дела генетические |
Вперед >>> Фундамент многоклеточности |
Интроны и ядро
Проще всего, как это ни странно, с интронами. Ключ к разгадке тут может дать вот какой факт. У прокариот интроны тоже встречаются, но в основном в генах, кодирующих рибосомные или транспортные РНК. Почему? А потому, что эти РНК не транслируются. Они проходят процессинг (вернее, сплайсинг), а потом используются по назначению как есть, образуя рибосомы или транспортируя аминокислоты. А вот процессинг информационных РНК у прокариот почти невозможен по уже названной причине: эти РНК очень часто начинают транслироваться до завершения полной транскрипции, еще буквально вися на ДНК, с которой транскрипция идет. Резать и сшивать их некогда и негде. Именно поэтому в генах, кодирующих белки, у прокариот интроны не накапливаются. Они вынужденно сразу удаляются естественным отбором — иначе белки будут получаться ни к чему не пригодными, ведь сплайсинга-то нет, а значит, не только в иРНК, но и в белке останутся большие бессмысленные куски.
Разделение процессов транскрипции и трансляции, вызванное появлением ядра, сняло это ограничение. Поэтому у эукариот интроны стали стремительно «размножаться», а сплайсинг стал совершенно необходимым этапом подготовки эукариотной иРНК к трансляции.
Заодно это привело к тому, что появился дополнительный способ регуляции экспрессии генов — альтернативный сплайсинг (см. рис. 10.10В). Например, если в некотором гене есть пять экзонов (1, 2, 3, 4 и 5), то в одном случае можно транслировать все пять из них, во втором — только четыре (скажем, 1, 2, 4 и 5), а в третьем — тоже только четыре, но в другом составе (скажем, 1, 2, 3 и 5). Во втором и третьем случаях ненужные экзоны будут вырезаны вместе с интронами. И таким образом, манипулируя ферментами сплайсинга, можно будет получать с одного гена три разных белка. В реальности таких белков, кодируемых одним и тем же геном, может быть гораздо больше — вплоть до многих тысяч. Количество экзонов в эукариотных генах вполне допускает такое число комбинаций. И иногда это бывает очень полезно (например, для белков иммунной системы позвоночных, которым в силу их функций нужна высочайшая изменчивость).
Таким образом, в данном случае усложнение и самого генома, и механизма его работы оказалось побочным эффектом главной, «титульной» особенности эукариот — появления ядра. Откуда же оно все-таки взялось?
В 2001 году австралийский биолог Филип Белл и японский биолог Масахару Такемура почти одновременно предложили вирусную теорию происхождения ядра[84] [85]. Вирусы — это неклеточная и чисто паразитическая форма жизни. У вируса есть гены, но нет собственного аппарата синтеза белка. Генетическая информация у разных вирусов может записываться как на РНК, так и на ДНК. Так вот, известно, что некоторые ДНК-содержащие вирусы (например, вирус оспы) имеют оболочку из двух липидных мембран, очень похожую на клеточное ядро. Там есть даже аналоги ядерных пор. ДНК у таких вирусов линейная — тоже как в эукариотном ядре. И что самое интересное, у них есть собственный аппарат транскрипции (но не трансляции), и этот вирусный аппарат транскрипции включает механизм обязательного кэпирования иРНК — опять же устроенный так же, как у эукариот. В принципе нет ничего невероятного в предположении, что эукариоты получили этот механизм от каких-то ДНК-содержащих вирусов путем горизонтального переноса генов. Но Белл и Такемура пошли дальше. Они предположили, что все ядро целиком произошло от крупного вируса, который вселился в будущую эукариотную клетку, превратился из паразита в постоянную внутриклеточную структуру и постепенно включил в себя почти весь хозяйский геном. Эта теория хороша тем, что она логично объясняет сразу несколько особенностей эукариотной клетки: двумембранное ядро, разобщение транскрипции и трансляции, линейность ДНК, кэпирование.
Правда, популярность вирусной теории происхождения ядра, взлетевшая было несколько лет назад, сейчас снижается. То, что в ядерном аппарате эукариот есть кое-какие белки вирусного происхождения, — установленный факт. Но вот вирусное происхождение всего ядра — это совсем иное дело. К тому же вирусная теория происхождения ядра решительно противоречит уже обсуждавшейся нами теории Баумов, согласно которой ядро произошло от клетки археи, а цитоплазма — от ее сомкнувшихся выростов. Тут уж придется выбрать или одно, или другое.
В любом случае надо честно признать, что происхождение клеточного ядра на данный момент неизвестно. Если с митохондриями дело хотя бы в общих чертах ясное, то с ядром о такой степени ясности пока что и мечтать не приходится. Загадка его происхождения не решена. Хотя и можно надеяться, что она решится в ближайшее время: биология сейчас развивается быстро.
Независимо от того, какая теория происхождения ядра правильна, мы можем совершенно точно сказать, что эукариотная клетка — это химерная структура, «собранная» из составных частей нескольких неродственных организмов. Если бы обитатели Земли три миллиарда лет назад могли мыслить, эукариотная клетка, скорее всего, была бы для них таким же нелепым и невероятным созданием, как для нас — самое фантастическое чудовище из древней мифологии, вроде той же химеры, василиска или уж вовсе невероятного мирмиколеона. А с другой стороны, именно на примере с возникновением эукариот мы прекрасно видим, что ветви эволюционного древа могут не только расходиться, но и сливаться. В этом месте древо жизни превращается в «кольцо жизни» (см. рис. 10.11).
<<< Назад Дела генетические |
Вперед >>> Фундамент многоклеточности |
- Межклеточное вещество
- 04. На что влияет нагрев планет звездами, звезд Ядрами Галактик, Ядер Галактик Ядрами Сверхгалактик
- Список литературы
- Разные человечества
- Красные тучи, закрывающие солнце
- Московская белая
- Муравей, семья, колония
- Примерные рационы для котят от месяца до пяти и старше
- Голосеменные растения завоевывают мир
- Пароль скрещенных антенн
- Позор страны
- Что такое водопад?