Книга: Империя звезд, или Белые карлики и черные дыры

Глава 11 Как немыслимое стало мыслимым

<<< Назад
Вперед >>>

Глава 11

Как немыслимое стало мыслимым

Результаты расчетов Уилера показывают, что звезды с массой гораздо больше массы Солнца могут в конечном счете сколлапсировать в ничто. Эта идея казалась настолько безумной, что он сам отказывался верить в нее. Сложнейшие уравнения Уилер и его команда решали с помощью компьютера MANIAC. Итак, очень массивная звезда будет сжиматься, пока не станет невообразимо малой и невообразимо плотной. Ее гравитация будет столь сильной, что звезда стянет пространство вокруг себя и в какой-то момент поглотит его. Все это казалось совершенно абсурдным, а кроме того, отсутствовали астрономические данные, которые подтвердили бы теорию.

В 1958 году на Сольвеевской конференции по физике Уилер заявил, что далеко не все в его теории учтено. По-видимому, звезды каким-то образом могут избавиться от массы таким образом, что она станет меньше максимально возможной для нейтронной звезды. Уилер и его команда подсчитали, что эта масса примерно в два раза больше массы Солнца. Уилер настаивал, хотя у него не было никаких доказательств, что коллапс звезды каким-то образом может быть предотвращен.

Тогда только Оппенгеймер находил результаты Уилера интересными и имеющими смысл. У него был ответ на сложные вопросы Уилера: «Как звезда, масса которой больше критической, коллапсирует под действием гравитационных сил и, сжимаясь больше и больше, в конечном счете исчезает?» Но Оппенгеймера не поддержали — он не пользовался большим авторитетом среди астрофизиков, так как написал всего лишь несколько статей, основанных на чисто теоретических концепциях. А Уилер, наоборот, принимал участие в работе группы ученых, которая занималась применением ядерной физики к изучению структуры звезд. При всех имевшихся тогда теориях никто на практике не наблюдал, как именно звезды умирают, за исключением того случая, когда они становятся белыми карликами.

Но все изменилось, когда Стирлинг Колгейт сделал свое потрясающее открытие. В то время он был лучшим специалистом в США по испытанию термоядерного оружия. Колгейт работал в Ливерморской национальной лаборатории в Калифорнии. Он понял, что детекторы американских спутников, которые с разведывательной целью наблюдают за территорией Советского Союза, могут зафиксировать вспышки света от сверхновых и, приняв их за взрывы, инициировать третью мировую войну. При этом не важно, что сверхновые находятся на расстоянии сотен тысяч триллионов километров от Земли, а вспышки произошли более 100 тысяч лет назад. Колгейт был сухощавым, крепким, загорелым мужчиной, в поведении непосредственным не по возрасту (сейчас ему более восьмидесяти), но бесконечно преданным науке. Его интересы были чрезвычайно разнообразны, он обладал высочайшими познаниями как в области экспериментальной, так и теоретической физики и прекрасно понимал техническую сторону астрономии.

Первое знакомство Колгейта с производством ядерного оружия произошло на территории будущей лаборатории в Лос-Аламосе. Он учился в школе для фермерских детей, когда в декабре 1942 года сюда прибыла первая делегация из Вашингтона. Она состояла из впечатляющего числа офицеров и двух гражданских лиц. Сразу после визита было сделано шокирующее заявление — школа должна быть немедленно закрыта. Колгейта и двух других старшеклассников выпустили досрочно. Ребята быстро поняли, что происходит. Те двое гражданских членов делегации, которых представили как мистер Смит и мистер Джонс, на самом деле были учеными — в Лос-Аламос тогда впервые приехали Роберт Оппенгеймер и Эрнест Лоуренс, физик-ядерщик из Беркли и лауреат Нобелевской премии 1939 года. Оппенгеймер лично вручил дипломы трем школьникам, после чего дал указание снести несколько домов бульдозерами и построить на их месте лаборатории и офисы. Как вспоминал Колгейт, этическая сторона решения о сносе школы совершенно не тревожила Оппенгеймера, в отличие от Лоуренса, который был несколько смущен. С этого момента у Колгейта возникло серьезное недоверие к Оппенгеймеру, сохранявшееся на протяжении всей их совместной работы. Однако он все-таки отнесся к «мистеру Смиту» с сочувствием, наблюдая, как тот страдал от ощущения своей вины в деле реализации Манхэттенского проекта, целью которого было создание самого страшного оружия в истории человечества. Колгейт был отпрыском одной из богатейших семей Америки, но свою карьеру делал вполне самостоятельно. Через два года после той судьбоносной встречи в Лос-Аламосе он записался в торговый флот. Потом Колгейт всегда говорил, что это занятие — бороздить океаны и моря — ему чрезвычайно нравилось. Правда, ему пришлось завоевать уважение опытных моряков, которых мало интересовали вундеркинды, главным для них было умение работать.

6 августа 1945 года капитан собрал весь экипаж в кают-компании и сообщил, что Америка сбросила атомную бомбу на Хиросиму. Он добавил, что был бы очень благодарен, если бы мистер Колгейт объяснил им, что это значит. Колгейт кое о чем догадывался, но все его догадки в то время были государственной тайной. Да и вряд ли моряки бы поняли, что при каждом акте деления ядер образуется два или более нейтрона, начинается неконтролируемая цепная реакция, которая и приводит к смертоносному взрыву. Демобилизовавшись в 1946 году, Колгейт поступил в Корнеллский университет и провел там год, изучая электротехнику, а затем решил, что физика гораздо увлекательнее. Эдвин Солпитер вспоминал, какое прекрасное впечатление производил на всех этот необыкновенный молодой человек. Защитив диссертацию по ядерной физике, Колгейт работал в Беркли, а в 1952 году перешел в Ливерморскую национальную лабораторию, недавно созданную Теллером при содействии ВВС США для конкуренции с Лос-Аламосом, где, по мнению Теллера, разработка ядерного оружия велась слишком медленно. Теллер ясно дал понять, что единственная цель Ливерморской лаборатории — создание водородной бомбы. Учитывая репутацию Колгейта, Теллер предложил ему взять на себя систему диагностических измерений для предстоящих испытаний. «Ну конечно. Я всегда с удовольствием занимался взрывчатыми веществами, и, когда разобрался с динамитом, приступил к термоядерной бомбе», — непринужденно объяснял мне Колгейт.

Итак, Колгейту предстояло проанализировать радиоактивные продукты взрыва в атмосфере с помощью специально построенного самолета. Особенно важной была «быстрая диагностика» — измерение спектра энергии нейтронов и гамма-лучей с большой энергией, образовавшихся после взрыва. Ученые хотели понять, насколько хорошо функционировал механизм бомбы, и определить последовательность событий от деления до синтеза в процессе Теллера — Улама, прежде чем все промежуточные компоненты исчезнут.

Новые диагностические приборы требовалось сконструировать как можно быстрее. Испытание первой водородной бомбы «Майк» было намечено провести в том же 1952 году. Работа Колгейта состояла в бесконечных переездах между Ливермором и Лос-Аламосом. Сначала — перелет в Эль-Пасо в Техасе, затем пересадка на самолет, летящий до Альбукерке в Нью-Мексико, а оттуда — уже в Лос-Аламос.

Во время одного из этих перелетов он забрел в бар в Сьюдад-Хуарес, недалеко от Эль-Пасо. Там он разговорился с бывшим морским пехотинцем, который когда-то занимался астрофизикой. Новый приятель Колгейта был южанином. Растягивая слова, он рассказывал, что как-то работал с одним из самых чернокожих людей, которых когда-либо видел в жизни. Он всегда считал, что такие люди глупы, но тот парень оказался умнейшим человеком. «Хотите верьте, хотите нет, — закончил он, — но у него и имя было совершенно сумасшедшее — Чандрасекар!» Колгейт встречался раньше с Чандрой в связи с работой по переносу излучения, но не знал, что индийский ученый что-то сделал и в астрофизике. Тогда вся эта история закончилась жуткой попойкой. После тяжелого похмелья на следующее утро они добрались из Хуареса в Эль-Пасо. Как это у них получилось, Колгейт помнил очень смутно. Из самолета, прилетевшего в Альбукерке, их вынесли. Оттуда новый друг Колгейта направился в Чикаго, а сам Колгейт в ужасном состоянии прибыл в Лос-Аламос, и первым человеком, с которым он столкнулся, был Чандра, тогда — консультант по вопросам предстоящего испытания «Майка». Не раздумывая Колгейт выпалил ему всю эту историю и вдруг почувствовал, что страшно смутился. Однако Чандра просто покатился со смеху. Рассказ ему явно понравился.

Колгейт не принадлежал к «гламурной» группе ученых-атомщиков, к тому же его работа была совершенно секретной, поэтому о нем обычно не упоминают в книгах по созданию водородной бомбы. Однако именно он руководил испытаниями первой водородной бомбы «Браво». Тогда ему исполнилось всего двадцать девять лет, и в его подчинении была тысяча сотрудников.

Испытания «Браво» прошли с огромным успехом. Все было хорошо — и мощность бомбы, и методы диагностики. В этой работе Колгейт проявил себя блестяще, и Теллер предоставил ему карт-бланш для выбора темы следующего исследовательского проекта. Колгейт решил заняться термоядерным синтезом и физикой плазмы для использования ядерной энергии в мирных целях. Но от прошлого не уйдешь.

В 1959 году по рекомендации руководителей Ливерморской и Лос-Аламосской национальных лабораторий Государственный департамент попросил Колгейта участвовать в качестве научного консультанта на советско-американских переговорах в Женеве о запрещении ядерных испытаний. Обе стороны хотели «договориться о системе обнаружения, потому что мы еще не все ядерные бомбы сбросили друг на друга». Колгейт предложил создать систему спутников, предназначенных для обнаружения ядерных испытаний. Потом он вспомнил некоторые исследования, которые провел в 1956 году со своим коллегой Монтгомери Джонсоном. В то время правительство США предложило рассматривать космос как еще одну среду для ведения войн — помимо воздуха, земли и воды. Колгейт и Джонсон был наняты для исследования специфики взрыва водородной бомбы в космосе. Они провели моделирование и выяснили, что в результате возникнет «чудовищное» количество рентгеновского и гамма-излучения — как при взрыве сверхновой[69]. Взрыв водородной бомбы удивительно похож на вспышку сверхновой. Но проблема заключалась в том, что спутник для обнаружения ядерных испытаний мог принять вспышку сверхновой за взрыв бомбы и тем самым инициировать катастрофическую войну. «Если мы хотим получить хороший спутник-шпион, необходимо учитывать существование сверхновых, — говорит Колгейт. — Русские очень много сделали в изучении гамма-лучей, очень сильного излучения из космоса, которое могло исходить от сверхновых». — признавал он. Колгейт был самым молодым участником этого представительного собрания американских и советских ученых. Его знания о сверхновых были явно недостаточными, но почти все участники были на том же самом уровне.

К 1959 году исследования рентгеновского и гамма-излучения в космосе были усовершенствованы. Рентгеновские лучи не могут проникнуть в атмосферу Земли, так что эксперименты проводились с использованием аппаратуры на ракетах, первыми из которых были немецкие Фау-2. В 1961 году СССР взорвал 50-мегатонную «Царь-бомбу», нарушив советско-американский мораторий на ядерные испытания. Американцы были потрясены. Очевидно, СССР согласился на мораторий только для того, чтобы выиграть время и подготовиться к следующей серии испытаний, в то время как Соединенные Штаты свято выполняли свои обязательства. Работы в Ливерморской и Лос-Аламосской лабораториях шли день и ночь. Понимание феномена сверхновых стало главным приоритетом.

Теллер настаивал на том, чтобы Колгейт следил за исследованиями по сверхновым, но тот и так уже начал заниматься астрофизикой. Обнаружив связь между «сверхновыми и ядерным оружием», Колгейт отправился к Уильяму («Вилли») Фаулеру, эксперту Калифорнийского технологического института по ядерным реакциям в звездах. Они заключили сделку: два раза в неделю Колгейт читает лекции по теории взрывов — своей узкой специальности — в Калифорнийском технологическом институте, а взамен осваивает астрофизику. Сотрудники института и аспиранты с огромным удовольствием опровергали его сумасбродные идеи о сверхновых, и Колгейт, смиренно выслушав их насмешливые оценки, после занятий шел на пляж Венис-Бич, где и проводил оставшуюся часть дня.

Колгейт вначале занимался исследованиями сверхновых со своим коллегой Монтгомери Джонсоном. Их работа основывалась на классической статье 1957 года семейной пары Маргарет и Джеффри Бербидж из Калифорнийского университета в Сан-Диего, написанной вместе с Фаулером и кембриджским астрофизиком Фредом Хойлом. Этот квартет назвали (по первым буквам фамилий его членов) B2FH. Бербиджи, Фаулер и Хойл убедительно показали, что в процессе эволюции в звездах образуются все более и более тяжелые элементы. Если звезда значительно массивнее Солнца, она завершает свою жизнь с образованием железного ядра, имеющего плотность 10 миллионов граммов на кубический сантиметр. Далее предстояло решить, как эти звезды становятся сверхновыми и что от них остается. Все сошлись на том, что верна гипотеза Цвикки 1930 года — после катастрофического взрыва сверхновой возникает нейтронная звезда.

Стареющая звезда — это огромный шар с несгораемым железным ядром, которое окружают слои ядерной «золы», оставшиеся после сгорания кремния. На этом этапе уже не может происходить никаких ядерных реакций, служащих источником энергии, и звезда начинает остывать. Под давлением огромного веса верхних слоев ядро резко сжимается, и звезда превращается в смесь нейтронно-избыточных ядер, электронов и протонов при невообразимо высокой температуре около 5 миллиардов градусов Кельвина, возникающей из-за огромного сжатия. При этой температуре мощное излучение (рентгеновские и гамма-лучи) расщепляет нейтронно-избыточные ядра на ядра гелия (альфа-частицы), протоны и нейтроны.

Но эти реакции идут с поглощением, а не выделением энергии, так что единственный способ для звезды получить энергию — это сжиматься под собственной тяжестью. В результате температура ядра снова начинает расти. Излучение высокой энергии, взаимодействуя с альфа-частицами, разрывает их на протоны и нейтроны. Все больше и больше электронов сталкивается с протонами в тяжелых ядрах, которые не разрушаются и в которых образуются нейтроны и нейтрино[70]. Это уменьшает количество электронов и ослабляет давление электронного вырождения, в результате ядро звезды становится менее твердым и звезда коллапсирует. С огромной скоростью — 58 тысяч километров в секунду — железное ядро и оболочка кремниевой «золы» сжимаются в доли секунды, и шар размером с Землю превращается в сверхплотную сферу диаметром 20 километров. Но это лишь треть общей массы. Все происходит настолько быстро, что слои углерода, кислорода, неона, гелия и водорода остаются снаружи — возникает оболочка без центра. Механические возмущения распространяются в звезде лишь со скоростью звука. Но ядро коллапсирует в тысячу раз быстрее. После того как ядро звезды сожмется, ядерная «зола» из луковичной структуры мгновенно падает на него. Ядро достигает своего предела сжатия, останавливается и затем разжимается как пружина. Это создает ударную волну, устремляющуюся наружу со скоростью 9600 километров в секунду, прорываясь сквозь «золу», падающую на ядро. При создании модели взрыва сверхновой есть одна проблема — нужно убедиться, что ударная волна не останавливается под действием падающего внутрь вещества. Если она будет продолжать движение, то возникнет взрыв, который мы увидим как вспышку сверхновой.

Сколлапсировавшее ядро внутри звезды подобно Стране чудес из кэрролловской «Алисы», где нет различия между внутренним и внешним. Все перемешивается и сливается вместе: протоны, электроны, экзотические элементарные частицы, возможно даже свободные кварки и огромное количество нейтронов. Такой и представляется нейтронная звезда[71]. Для стабильности нейтронной звезды необходимо наличие сил противодействия силам притяжения между нейтронами и протонами (то есть ядерным силам). В противном случае их взаимное притяжение вместе с гравитацией звезды приведет к ее коллапсу и звезда со временем исчезнет. Кроме того, во время взрыва звезде придется выбросить достаточное количество массы, и лишь тогда возникнет стабильная нейтронная звезда. По расчетам Оппенгеймера и Волкова, масса исходной звезды должна быть не больше 0,7 массы Солнца. (Развитие ядерной физики позволило разработать реалистичные модели сверхновых звезд, согласно которым в настоящее время масса, при которой нейтронная звезда становится нестабильной, равна двум-трем массам Солнца.) Если остатки сгоревшей звезды больше этой максимальной массы, она не сможет стать нейтронной звездой или тем более белым карликом.

Исследования Колгейта и Джонсона были первой попыткой понять механизм взрыва сверхновой. Они предположили, что ударная волна, отразившись от ядра, врывается в ядерную «золу», падающую внутрь звезды под действием гравитации, нагревает ее и инициирует взрыв сверхновой. Но это оказалось не так. Еще один член команды Ричард Уайт с помощью компьютерного моделирования показал, что энергия ударной волны для этого слишком мала. Вместо того чтобы взорваться и вспыхнуть как сверхновая, звезда просто сожмется в точку.

Уайт изучал физику в колледже Помона в Калифорнии, где освоил еще и курс компьютерного программирования. После окончания колледжа в 1956 году он получил место в Ливерморской национальной лаборатории. В 22 года он стал там лучшим компьютерщиком. Компьютеры были еще в зачаточном состоянии, а программисты и физики-теоретики в Ливерморе только начали с ними знакомиться. Уайт вспоминал о работе с Колгейтом так: «Я как будто попал в тайфун».

И вот Колгейт и Уайт приступили к изучению сверхновых. Физики задались целью создать модель звезд на грани коллапса. Это была очень амбициозная программа. Она заключалась в создании математического описания звездного газа и построении уравнения состояния, учитывающего ядерные силы, которые предотвращают полный коллапс звезды, а также включала изучение смеси химических элементов из состава звезд. Уравнение состояния, которое они пытались создать, было куда более сложным, чем уравнение состояния идеального газа или уравнение Чандры для «идеального» белого карлика, где игнорируются взаимодействия между частицами газа, а также гораздо более сложным, чем уравнение, полученное командой Уилера. Они ввели свое уравнение состояния в компьютерную программу, моделирующую реальные звезды. Уайт начал с компьютерной программы, которая объединяла математическое обеспечение для разработки водородной бомбы с самыми современными уравнениями состояния звезд. В то время только в Ливерморе и Лос-Аламосе были достаточно быстрые компьютеры для проведения таких сложных расчетов.

Разрабатывая ядерное оружие, Колгейт и Уайт ничего не знали об исследованиях сверхновых Я. Б. Зельдовичем и его сотрудниками. Это была эпоха, когда советские ученые стали принимать участие в международных встречах, но в сопровождении «помощников», «людей в штатском», агентов КГБ с сомнительными научными достижениями. Это не означало, что между Востоком и Западом не существовало никаких научных контактов, но они были более чем сдержанными. Разумеется, Зельдовича не выпускали из Советского Союза. Часто рассказывали историю о том, как однажды организатор секции астрофизики на заседании Американского физического общества решил сделать жест доброй воли и предложил члену советской делегации, выбранному наугад, прочитать лекцию. А тот оказался агентом КГБ.

Колгейт говорил, что сначала «он не думал, что делает что-то особенно оригинальное». Считалось, что вместе с Уайтом они разрабатывали модели чужих сценариев, например из статьи B2FH. Однако все было несколько иначе. После того как Колгейт и Джонсон выдвинули гипотезу, что взрыв сверхновой вызван ударной волной, которая отражается от ядра, врезается в падающую ядерную «золу» и воспламеняет ее, Фаулер и Хойл проделали детальный расчет. Но Колгейт и Уайт показали, что Фаулер и Хойл сделали ряд ошибок[72].

Важно было понять, как отражение ударной волны от ядра приводит к взрыву. И тогда у Колгейта возникла отличная идея: «Почему бы не рассмотреть то, чем все остальные пренебрегли?» Итак, ядро звезды сжимается от размеров Земли до диаметра меньше 20 километров, и электроны сталкиваются с протонами водорода и более тяжелых ядер, например железа, образуя не только нейтроны, но и триллионы и триллионы триллионов нейтрино. После отражения все это множество частиц устремляется наружу со скоростью более чем 10 тысяч километров в секунду. Возможно, что ключом к решению проблемы энергии взрыва является нейтрино!

Теперь Колгейту нужно было узнать о свойствах нейтрино и ввести их в компьютерные модели, чтобы понять, могут ли нейтрино способствовать взрыву. Он отправился в Калифорнийский технологический институт, чтобы встретиться с Кристи. (Колгейт хорошо знал и ценил работу Кристи по переменным цефеидам, за которую тот был награжден медалью Эддингтона.)

Кристи идеи Колгейта показались интересными. И когда Колгейт смело спросил Кристи: «Могут ли нейтрино рассматриваться как газ?» — Кристи ответил: «Конечно, достаточно взглянуть на результаты Чандры, полученные для электронного газа». Кристи имел в виду открытое Чандрой давление вырождения электронов, которое возникает при высокой плотности электронов в белых карликах и предотвращает коллапс, если масса карлика меньше 1,4 массы Солнца. Нейтрино, как и электроны, протоны и нейтроны, могут создавать давление вырождения. «Ага, — подумал Колгейт, — да ведь никто не обращал внимания на важную часть этой головоломки! Поток нейтрино создаст огромное давление вырождения». Астрофизики заволновались. Коллеги великодушно предлагали свои варианты решения проблемы. Атмосфера в науке была исключительно творческой, без признаков зависти, и неудивительно, что тогда делались потрясающие открытия. «Вы говорите о сертификации ядерного оружия, а я говорю о том, можно ли сертифицировать сверхновую?» — вопрошал Колгейт с блеском в глазах. Под «сертификацией» водородной бомбы Колгейт имел в виду разработанную им теорию бомбы и понимание специфики термоядерного взрыва. Но в случае сверхновых до сертификации было еще далеко.

Введя параметры модели звезд в компьютер и запустив рабочую программу, Колгейт и Уайт обнаружили гораздо больше, чем ожидали. Оказалось, что они совершенно убедительно доказали — во что большинство астрофизиков, и даже сам Уилер, отказывались верить, — что звезды действительно могут бесконечно коллапсировать.

До того как Колгейт и Уайт приступили к компьютерному моделированию, даже самые продвинутые астрофизические исследования были основаны лишь на упрощенных звездных моделях. Эти работы обладали определенной ценностью, но все понимали — построенные модели далеки от реального поведения звезд, а потому считалось, что существует множество факторов, препятствующих коллапсу или взрыву звезды. Общепринятая точка зрения была такова: сингулярности невозможны. Уайт вспоминал, что астрофизики отказывались даже рассматривать бесконечный коллапс реальной звезды. Они считали само собой разумеющимся, что при сгорании звезды всегда теряют столько массы, чтобы оказаться ниже предела Чандрасекара, и спокойно умирают как белые карлики. Вопрос о полном коллапсе ученые отметали, утверждая, что это просто математическая абстракция.

Уилер часто ездил в Ливерморскую национальную лабораторию и постоянно общался с Колгейтом, Уайтом и с Чандрой, а их компьютеры выдавали все новые результаты, показывающие с неопровержимой силой, что ядро действительно коллапсирует. Чандра был счастлив.

Как вспоминал Кип Торн, выдающийся теоретик из Калифорнийского технологического института, Уилер был настолько поражен работой Колгейта и Уайта, что после встречи с ними вместо своей запланированной лекции в Принстоне рассказал студентам об их невероятных результатах. Наконец-то было окончательно доказано: если нейтронное ядро не потеряет столько массы, что станет легче некой предельной величины, оно будет непрерывно коллапсировать, превращаясь в бесконечно плотное образование.

А Колгейт и Уайт написали статью и в 1962 году представили ее в «Reviews of Modern Physics». Редакторы не могли понять, как поступить с этой в сущности не физической, а астрофизической статьей. Она пролежала в редакции два года, а потом ее отправили Чандре, тогдашнему редактору «Астрофизического журнала». Статья была написана не по канонам астрофизики, но Чандра высоко оценил ее и сказал Стирлингу: «Это должно быть опубликовано. Однако существуют некоторые астрофизические понятия, которые вы должны усвоить». Чандра сразу понял, что это исследование подтверждает главное открытие его жизни. В 1966 году статья наконец-то появилась. Для публикации одной из самых важных работ по астрофизике потребовалось четыре года! Колгейт отметил, что «Чандра тщательно отредактировал статью и некоторые места даже переписал».

Суть открытия Колгейта состояла в следующем: нейтрино могли катализировать прохождение ударной волны от ядра через верхние звездные слои без потери скорости. Ядро производит огромное количество нейтрино, увлекаемых ударной волной. Они нагревают наружные слои вещества, падающие внутрь, которые затем разворачиваются и несутся сквозь звезду, сдувая внешнюю мантию и оставляя в центре нейтронную звезду. Все выглядело очень впечатляюще, но нейтронные звезды оставались лишь гипотезой. Астрофизики сомневались в их существовании.

В 1967 году два кембриджских астронома Джоселин Белл и Энтони Хьюиш изучали радиосигналы, идущие от звезд. Они заметили, что некоторые звезды излучали с потрясающей регулярностью и с периодами от 0,25 до 2,0 секунд. Примерно так же наблюдатель периодически видит луч маяка с вращающимся прожектором. Что бы это значило? Неужели это сигналы внеземной цивилизации? Импульсы излучения появлялись слишком часто, чтобы прийти от звезд типа цефеид, с периодом пульсации порядка недель. Это также не могло быть сигналом от горячего пятна на вращающемся белом карлике, так как при такой скорости вращения он разлетелся бы на куски[73]. На следующий год были зафиксированы пульсирующие радиоволны, исходящие из Крабовидной туманности, которая возникла после взрыва сверхновой.

Это было потрясающее астрономическое открытие. Радиоимпульсы никак не могли быть излучением белого карлика. Астрофизики предполагали, что белые карлики — конечная стадия звездной эволюции. Существование нейтронных звезд было лишь гипотезой, а идея о коллапсе хоть и подтверждалась строгим математическим расчетом, казалась полным абсурдом. Итак, мало кто верил в реальность нейтронных звезд, но только они могли испускать пульсирующие радиоволны. Появились первые экспериментальные доказательства, что звезды в конце эволюции могут превращаться не только в белых карликов. Все встало на свои места. Будучи ядром огромной сколлапсировавшей звезды, нейтронная звезда должна вращаться намного быстрее гиганта, из которого она образовалась, — как фигуристка на льду, которая вращается все быстрее и быстрее, прижимая руки к телу. Кроме того, магнитное поле нейтронной звезды почти в 10 миллиардов раз больше, чем у ее предшественника до коллапса. Эти вращающиеся нейтронные звезды назвали «пульсарами»[74].

С тех пор астрономы нашли более тысячи пульсаров, только в нашей Галактике их около миллиона[75]. Белл и Хьюиш обнаружили то, что еще в 1933 году предсказали Цвикки и Бааде и то, что Оппенгеймер и Волков положили в основу своей теории в 1938 году. Они доказали, что нейтронные звезды существуют. Хотя модель Колгейта пересматривалась и уточнялась в последующие десятилетия по мере увеличения мощности компьютеров, основную их идею никто не опроверг. Однако существовал еще один возможный и самый драматичный вариант завершения жизни звезды. После того как Чандра открыл максимально возможную массу белого карлика, астрофизики не переставали интересоваться этим вопросом. Расчеты Колгейта и Уайта, которые так взволновали Уилера, подтвердили результаты Чандры, но астрофизики по-прежнему отказывались верить, что коллапсирующая звезда может стать не только белым карликом или нейтронной звездой, но и практически полностью исчезнуть, превратиться в ничто. Бесконечный коллапс приводит к такой колоссальной плотности и такой сильной гравитации, что нарушаются все законы пространства и времени. Да это просто немыслимо! И только после 1970-х годов немыслимое стало казаться мыслимым…

<<< Назад
Вперед >>>

Генерация: 9.020. Запросов К БД/Cache: 3 / 1
Вверх Вниз