Книга: Прикладные аспекты аварийных выбросов в атмосферу

1.7. Зависимость аварий от условий окружающей среды

<<< Назад
Вперед >>>

1.7. Зависимость аварий от условий окружающей среды

В настоящее время в научной литературе имеется огромное количество методик, алгоритмов и формул, позволяющих, по утверждениям их авторов, прогнозировать аварийные ситуации, инциденты и катастрофы антропогенного и естественного происхождения. Подробные методические материалы, инженерные разработки и математические модели исходят обычно из рассмотрения некоторых стандартных сценариев возникновения и развития опасного явления, которые пренебрегают вкладом внешней среды в протекание инцидента.

Обычно задаются некоторыми «средними» значениями окружающей среды: температурой воздуха и скоростью ветра, очень редко — высотным градиентом температуры, еще реже — турбулентностью атмосферы. Безусловно, такой подход позволяет оценить общую физическую картину явления, но может привести к большим погрешностям расчетов, а иногда и к ошибкам в самом прогнозе при некоторых экстремальных или неординарных природных явлениях.

Для устранения возникающих ошибок к аварийному прогнозу следует добавить прогноз метеорологический. Следует иметь в виду, что метеорологическое прогнозирование не способно, в принципе, предусмотреть все детали будущего состояния атмосферы. Следует исходить из диалектической детерминации происходящих явлений, сущность которой в факте, что необходимость проявляется через случайность. Отсюда следует, что к явлениям будущих аварийных ситуаций необходим вероятный подход с учетом возможной многовариантности развития процессов.

Отметим, что метеорологические прогнозы относятся к категории поисковых прогнозов [146], основывающихся на условном продолжении в будущее тенденции развития изучаемого процесса в прошлом и в настоящем. Задачей таких прогнозов является ответ на вопрос, что произойдет вероятнее всего при условии сохранения существующих тенденций.

При прогнозировании аварийных ситуаций целесообразно воспользоваться принятой в прогностике [147] классификации аварий. По промежутку времени, на который разрабатывается прогноз, все прогнозы подразделяют на оперативные (текущие), краткосрочные, среднесрочные, долгосрочные и сверхсрочные (Табл. № 1.1.).

В основе комплексного прогнозирования аварий с учетом возможных воздействий окружающей среды должны быть следующие взаимодополняющие источники информации о будущем поведении объекта исследований (пожара, взрыва, токсического выброса):

— оценка будущего состояния прогнозируемого объекта на основе опыта (чаще всего при помощи аналогии с достаточно хорошо известными сходными процессами и явлениями);

— экстраполяция на будущее тенденций, закономерности развития которых в прошлом и настоящем достаточно хорошо известны;

— модель будущего состояния объекта исследования, построенная в соответствии с ожидаемыми изменениями ряда условий, закономерности, развития которых в прошлом и настоящем достаточно хорошо известны.

В соответствии с этими тремя источниками информации о возможном аварийном объекте существуют три дополняющие друг друга способа разработки прогнозов: экспертный, экстраполяционный и модельный.

Экспертное оценивание используется при обсуждении прогнозов несколькими экспертами — квалифицированными специалистами в рассматриваемой области.

Таблица № 1.1.

Классификация прогнозов по промежутку времени до инцидента


Способ экстраполирования предоставляет собой процесс построения динамических рядов эволюции прогнозируемого объекта по данным в прошлом и настоящем путем распространения обнаруженных закономерностей на будущее.

Метод математического моделирования представляет собой процесс построения моделей происходящих физических процессов с использованием математических уравнений. Этот процесс должен проводиться с учетом вероятного изменения прогнозируемых объектов на период упреждения прогноза по имеющимся данным о масштабах и направлении изменений. Должны учитываться изменения самих аварийных объектов и метеорологической обстановки на этот временный интервал.

Наиболее эффективной прогнозной моделью аварийной ситуации, очевидно, будет система уравнений, учитывающая физические процессы на аварийном объекте и в окружающей среде. В метеорологическом прогнозировании — это система уравнений гидротермодинамики атмосферы.

Большое практическое значение имеют статистические и физические модели. На практике эти способы взаимно дополняют друг друга.

Рассмотрим атмосферные явления, способные при некоторых обстоятельствах оказать заметное влияние на возникновение и (или) развитие аварий разного характера, а также на возможность их ликвидации. Такими явлениями являются:

— выпадающие осадки из воды, снега и льда;

— взвеси в воздухе твердых и жидких частиц;

— поверхностные отложения воды и льда;

— движение воздушных масс под действием ветра;

— грозовые электрические разряды.

Ветровое движение воздушных масс

Ветер является важной характеристикой при возникновении и развитии аварийных ситуаций, особенно это относится к ветровым потокам типа шквалов. Изменения скорости и направления ветра в течение прогностического периода определяются в основном периодическими изменениями полей давления, температуры и вертикальных движений, облачности, которые связаны с фронтальными разделами.

Отмечается [146], что по ожидаемому в момент прогноза значению скорости и направления ветра на уровне флюгера можно приближенно рассчитать скорость и направление ветра на различных уровнях пограничного и приземного слоев, где в основном происходят аварии.

Под шквалом понимается [146] резкое усиление ветра у поверхности земли в течение короткого времени, сопровождающееся изменениями его направлений. Скорость ветра при шквале может превышать 30 м/с.

Шквалы связаны с мощными кучево-дождевыми облаками; время их существования как перемещающихся мезомасштабных объектов составляет несколько часов. При движении подобных объектов на местности возникает узкая шкваловая полоса шириной от нескольких сотен метров до нескольких километров и протяженностью до сотни километров.

Шквалы обычно сопровождаются ливнями и грозами, часто с выпадением града. Давление атмосферного воздуха перед приходом шквала сильно падает, затем при шквале оно резко возрастает в течение десятков минут, а после прекращения ливневого дождя вновь падает. Температура воздуха, резко понижающаяся при шквале, после его прохождения немного повышается, но остается более низкой по сравнению с ее значением до шквала. Падение температуры и рост давления при шквале связаны с выпадением ливневого дождя и охлаждением воздуха в его зоне.

Шквалы над сушей чаще всего развиваются во второй половине дня, когда конвективные облачные структуры становятся наиболее мощными.

Физическими условиями, благоприятными для возникновения шквалов, являются:

— неустойчивая стратификация воздушных масс;

— высокая доля водяного пара в теплом приземном воздухе (до 10 % и более);

— высокая температура теплого воздуха перед холодным фронтом.

Если ожидаемая синоптическая ситуация и термодинамические условия в воздушных массах благоприятны для возникновения шквалов, то возможность их появления указывается в формулировке прогноза с заблаговременностью до 24–36 ч.

Шквалы могут оказать заметное влияние на развитие пожаров, перенося огонь с одного объекта на другой. Большая скорость ветра способствует также усилению очага горения. Токсичные выбросы при шквалах также могут быть транспортированы воздушными потоками на большие расстояния за короткие временные отрезки. При некоторых ситуациях шквальные потоки могут повлиять на возникновение пожарной ситуации и взрывов на производствах.

Другим проявлением движения воздушных масс являются смерчи или торнадо. Эти атмосферные образования представляют собой огромные вихри, возникающие, как правило, в грозовых облаках. Они имеют форму хобота или воронки и, достигая поверхности земли или водного объекта, способны разрушить и всосать в себя массивные предметы. Смерч с большой скоростью перемещается вместе с порождающим его облаком, разрушая попутно строения и здания и приводя к взрывам и пожарам в быту и на производствах. Скорости воздушных потоков внутри смерча могут достигать сотен метров в секунду.

Ветровые потоки при более слабом ветре (от 7 м/с и до 12 м/с) приводят в приземном воздушном слое к переносу твердых частиц — снега зимой, пыли и песка в теплое время года.

Перенос снега ветром над поверхностью земли называют метелью. Она возникает при сочетании сравнительного сильного ветра с выпадением снега. Разновидностью метели является поземок — перенос сухого, ранее выпавшего снега в тонком слое, непосредственно прилегающем к поверхности земли (до 12 см). Благоприятным условием для выпадения метели является выпадение снега на ледяную корку, образовавшуюся до этого на снежном покрове.

Перенос больших количеств пыли или песка называют пыльной (песчаной) бурей. Это явление типично для степных и пустынных районов. Возникают пыльные бури при скоростях ветра >12 м/с, когда турбулизованный приповерхностный воздушный слой отрывает частицы почвы (пыль и песок) от поверхности земли и переносит их на большие расстояния. При этом пыль может оставаться в воздухе несколько суток. Важное значение при прогнозе пыльных бурь имеет учет свойств подстилающей поверхности, т. е. степени закрепленности верхнего слоя почвы. Большую помощь в прогнозе пыльных бурь могут оказать спутниковые фотографии.

Метели, как и пыльные бури, могут оказывать заметное влияние на распространение в атмосфере токсичных веществ.

Атмосферное электричество

Атмосферные электрические разряды в виде молний наблюдаются при грозах, бурях, смерчах, а иногда и метелях. Молния представляет собой электрический разряд между облаками или между облаками и земной поверхностью. Их длина достигает несколько километров, диаметр — десятков сантиметров. Сила тока линейных молний -100 к А, продолжительность — 0,1 с.

Кроме линейных — наиболее распространенных молний — наблюдаются шаровые (объемные) и неточные (в виде ряда продолговатых объемов).

Вероятность поражения зданий и сооружений молнией зависит от интенсивности грозовой деятельности на данной местности, ее рельефа, размеров зданий и сооружений.

Интенсивность грозовой деятельности характеризуется общей годовой продолжительностью гроз в часах для каждого района страны. Общая годовая продолжительность гроз определяется по формуле:

N= 1,5 n (час/год),

где n число грозовых дней в году при средней продолжительности грозы, принимаемой равной 1,5 часа.

По данным многолетних наблюдений метеорологических станций для каждого района составлены карты грозовой деятельности. Наиболее часты и интенсивны грозы в южных районах страны, в северных районах грозы происходят редко.

Наиболее часто электрические разряды при грозах возникают при синоптической ситуации благоприятной для образования кучево-дождевой облачности. В умеренных широтах грозы возникают, как правило, когда такое облако своей вершиной достигает уровня с температурой — 23 С и ниже, а толщина облака превышает 4 км.

Влияние, оказываемое грозовыми электрическими разрядами на возникновение и развитие аварий может быть весьма значительным (см. Таблицу № 1.3).

Выпадающие осадки

Термин «осадки» используется в гидрометеорологии при ожидаемой температуре воздуха в пределах от 3 до — 3 °C. Фазовое состояние осадков дается в терминах «дождь», «снег» и уточняющие понятия: «снег с дождем», «дождь со снегом», «снег, переходящий в дождь» и т. д.

Продолжительность осадков обозначается следующими терминами:

— кратковременные осадки при их продолжительности 3 ч. и менее;

— продолжительные осадки при их непрерывном выпадении 6 ч. и более;

— временами осадки, если они выпадают с перерывами 2 раза и более при продолжительности каждого выпадения 3 ч. и менее.

Характеристика возможных жидких и твердых осадков приводится в таблице 1.2.

Таблица № 1.2.


Ливневые осадки выпадают из кучево-дождевой облачности, возникающей при благоприятных для этого синоптических ситуациях в данном районе. Знание таких синоптических положений является одним из основных условий успешности прогноза ливневых осадков, гроз и града.

Прогноз обложных и моросящих осадков разрабатывается синоптическими, физико-статистическими и гидродинамическими (численными) методами [146]. Современные расчетные методы расчета возможных осадков основаны на параметризации внутриоблачных процессов, приводящих к образованию осадков.

Аэровзвеси

Взвешенные в воздухе твердые и жидкие частицы в больших объемах создают негативно воздействующие на живые организмы атмосферные образования, называемые туманами, пылью, дымом, смогом. Физические и динамические характеристики подобных образований имеют близкую природу, и поэтому для целей выяснения их влияния на аварийные ситуации допустимо ограничится рассмотрением наиболее общего и типичного случая — туманов.

Туманом называется помутнение приземного слоя воздуха из-за наличия в нем взвешенных капель и воды, ледяных кристаллов или их смеси [146], при котором горизонтальная дальность видимости становится менее 1 км хотя бы в одном направлении. Аналогичное явление при горизонтальной видимости 1 км и более называют дымкой.

По агрегатному состоянию воды все туманы можно разделить на капельные, ледяные и смешанные. В смешанных туманах переохлажденные капли зафиксированы при температурах воздуха до -4 °C.


Рис. 1.9. Классификация туманов по [146].

Все многообразие туманов по процессу возникновения разделяют на туманы охлаждения и туманы испарения (Рис. 1.9). Туманы охлаждения возникают за счет приближения влажности воздуха к состоянию насыщения при понижении температуры воздуха, туманы испарения возникают только тогда, когда температура испаряющейся жидкости выше температуры приземного слоя воздуха.

Туманы охлаждения, возникающие при понижении температуры подстилающей поверхности за счет ее радиационного охлаждения, называют радиационными, при перемещении влажного воздуха над холодной подстилающей поверхностью — адвективными.

Туманы испарения, в свою очередь, могут быть надводными при возникновении над водой или фронтальными — при испарении капель дождя, выпадающего из теплой надфронтальной воздушной массы, в холодном подфронтальном воздухе.

Туманами смешения называют аэровзвеси при смешении воздушных масс с разной температурой и влажностью. Если они возникают вблизи границы морских побережий или границ теплых и холодных морских течений, то их называют пограничными.

Кроме того, туманы могут возникнуть в результате хозяйственной деятельности человека в процессе конденсации водяного пара, поступающего в атмосферу. Их также называют антропогенными.

Орографические туманы образуются при подъеме адиабатически охлаждающегося воздуха по наветренным склонам возвышенности. При этом уровень конденсации должен быть ниже температуры на вершине возвышенности и над ней должна находиться инверсия температуры, препятствующая переносу продуктов конденсации от поверхности склона.

Отметим, что туман любого типа может появиться, если в прогностический период ожидается температура воздуха Т, равная или более низкая, чем температура туманообразования Тт, т. е. в условиях, когда Т<Тт.

Таким образом, для прогноза возникновения тумана необходим прогноз как температуры воздуха, так и температуры туманообразования. Методы прогнозирования туманов широко представлены в современной гидрометеорологической литературе.

Смог (англ, smog, от smoke — дым и fog — туман), определяемый как сильное загрязнение воздуха в больших городах и промышленных центрах также может быть отнесен к аэровзвесям. Он является разновидностью тумана. Классифицируют смоги следующие типы:

— влажный смог лондонского типа — сочетание тумана с примесью дыма и газовых отходов производства;

— ледяной смог аляскинского типа — смог, образующийся при низких температурах из пара отопительных систем и бытовых газовых выбросов;

— сухой смог лосанджелесского типа — смог, возникающий в результате фотохимических реакций, которые происходят в газовых выбросах под действием солнечной радиации; наблюдается устойчивая синеватая дымка из едких газов без тумана;

— фотохимический смог — разновидность смога, основной причиной возникновения которого считаются автомобильные выхлопы и загрязняющие выбросы предприятий в условиях инверсии температуры. Выхлопные газы в такой аэровзвеси вступают в химические реакции, которые под действием солнечного излучения, образуют озон. Фотохимический смог вызывает поражение дыхательных путей, рвоту, раздражение слизистой оболочки глаз и общую вялость. В ряде случаев в фотохимическом смоге могут присутствовать соединения азота, которые повышают вероятность возникновения раковых заболеваний.

Смог наблюдается обычно при слабой турбулентности при инверсиях температуры, при слабом ветре или штиле. Инверсии температуры в атмосфере — это повышение температуры воздуха с высотой вместо обычного для тропосферы ее убывания.

Температурные инверсии являются задерживающими слоями в атмосфере; они препятствуют развитию вертикальных движений воздуха, вследствие чего под ними накапливаются газообразные токсиканты, водяной пар и пыль. Пылевые и аэрозольные частицы являются ядрами конденсации. Поэтому при смоге всегда возникают слоистая дымка, туман и облака. Видимость уменьшается до нескольких десятков метров, предметы теряют цветовую окраску. Из-за рефракции света в слоях с температурной инверсией иногда возникают миражи.

Оседающие осадки

Замерзание продуктов конденсации водяного пара на наземных предметах и на поверхности земли приводит к образованию гололеда, изморози, гололедицы, наста обледенелого мокрого снега, твердого налета.

Несмотря на то, что эти природные явления не способны в заметной степени повлиять на возникновение и развитие аварий, их учет может дать полезную дополнительную информацию об инциденте в целом.

Оседающие осадки уменьшают проходимость транспорта и доступность места аварии. В частности, гололедица может оказать негативное влияние на ликвидацию аварийной ситуации с применением современной техники.

Рассмотрим кратко указанные выше атмосферные явления. Гололед представляет собой слой льда, нарастающего на поверхности земли или на предметах (преимущественно с наветренной стороны) при замерзании капель переохлажденного дождя, тумана или мороси. Он образуется при отрицательных температурах воздуха. Гололед возникает при метеорологических условиях, связанных, как правило, с выпадением переохлажденного дождя и с взаимодействием потоков теплого и холодного воздуха (фронтальные гололеды).

Основными благоприятными условиями для его возникновения являются наличие переохлажденного адвективного тумана, мощные инверсионные слои в пограничном атмосферном слое при умеренных и сильных ветрах.

Изморозью называют отложение льда на проводах, ветвях деревьев и других предметах при тумане. Этот процесс возникает в результате сублимации водяного пара (кристаллическая изморозь) или намерзания капелек переохлажденного тумана (зернистая изморозь).

Кристаллическая изморозь (в просторечии — иней) состоит из кристаллов льда, нарастающих преимущественно с наветренной стороны предмета при температуре воздуха ниже — 15 °C. Она легко осыпается при встряхивании.

Зернистая изморозь также возникает преимущественно с намеренной стороны предметов, но при сильном ветре. Она представляет собой снеговидный рыхлый снег, по внешнему виду напоминает гололед и близка к нему по плотности.

Зернистая изморозь возникает при замерзании на предметах капель переохлажденного тумана при температурах от — 3 до — 8 °C. Синоптические условия образования изморози такие же, как и при возникновении гололеда.

Вид наземного обледенения — гололед или изморозь — зависит от преобладающего размера капель тумана: если они меньше 20 мкм, то образуется зернистая изморозь, если больше, то образуется гололед.

Гололедица — это лед на поверхности земли, возникший по разным причинам [146]:

— вследствие замерзания мокрого снега или дождя и мороси при соприкосновении с переохлажденной поверхностью земли;

— из-за замерзания переохлажденного дождя или мороси на поверхности земли (по существу это гололед на земной поверхности);

— вследствие замерзания слоя воды на поверхности земли после оттепели или выпадения дождя в результате наступления похолодания.

Образование гололедицы зависит не только от атмосферных условий, но и от температуры подстилающей поверхности. Отрицательные температуры поверхности земли обеспечивают замерзание на ней выпадающих жидких или полужидких осадков.

Наст представляет собой гололедицу, возникшую на поверхности снежного покрова. В результате многократного образования наста снежный покров приобретает слоистую структуру с чередованием плотных и рыхлых слоев.

Обледенелый мокрый снег — ледяная масса, возникающая при быстром замерзании мокрого снега при температуре воздуха до + 2 °C и скорости ветра до 6 м/с. По внешнему виду напоминает очень плотную зернистую изморозь, но размерами может превосходить гололед.

Еще одним видам оседающих осадков является твердый налет — тонкий слой ледяных кристаллов, образующихся вследствие сублимации водяного пара на холодных, преимущественно каменных, поверхностях. Возникает преимущественно с наветренной стороны при ослаблении мороза, при оттепели, обычно в пасмурную погоду. Твердый налет белого цвета, его толщина не превышает нескольких миллиметров.

Отметим, что все виды наземного обледенения, за исключением твердого налета и кристаллической изморози, могут создавать опасные весовые нагрузки на различные сооружения и затруднять работу транспорта. Это может негативно сказаться на успешности ликвидации аварий.

Безусловно, невозможно предвидеть, какие метеорологические и синоптические условия будут ко времени наступления конкретной аварийной ситуации. Однако при составлении прогнозных экспресс-оценок развития уже начавшейся аварии информация о возможном влиянии на нее атмосферных явлений может быть весьма полезной и является ценным вспомогательным элементом в оценке полной картины развития инцидента.

Кроме того, подобные исследования способны оценить «коридор» возможных отклонений хода аварий от стандартного сценария, использующего некоторые «средние», как правило, ничем не обоснованные начальные и граничные условия.

Отметим, что при некоторых авариях атмосферные явления приобретают главенствующее значение в процессах возникновения и развития происшествия. Это относится к пожарам (особенно лесным), возникновение и протекание которых существенно зависит от атмосферных осадков, ветровых потоков, а также грозовых электрических разрядов.

На токсичные выбросы определяющее влияние может быть оказано осадками в виде дождя, снега и льда, туманами разной природы и метелью.

Возникновение и развитие взрывных аварий практически не чувствительно к атмосферным явлениям, за исключением возможного инициирования взрыва грозовым электричеством.

Влияние атмосферных явлений по классификации работы [146] на возможность возникновения и развития аварий разной природы представлено в Таблице № 1.3.

В таблице 1.4 представлены данные о негативном влиянии атмосферных явлений на возможность ликвидации аварийной ситуации противоаварийными подразделениями.

Как следует из таблицы, атмосферные явления могут оказывать заметные воздействия на возможность ликвидации аварий. Такими явлениями являются, в первую очередь, помутнения воздуха при туманах и поверхностные отложения льда (гололедица), а также сильные ветровые потоки типа шквалов, бурь и смерчей. Остальные проявления атмосферных явлений очевидно мало влияют на работу ликвидаторов аварий.

Таблица № 1.3.

Влияние атмосферных явлений на возможность возникновения и развития аварийной ситуации


Обозначения эффектов воздействия:

О — отсутствует (нулевой);

О-Н — от нулевого до незначительного;

Н — незначительный (слабый);

3 — значительный (средний);

Н-Опр — от незначительного до определяющего;

Опр — определяющий (сильный).

Таблица № 1.4.

Влияние атмосферных явлений на возможность ликвидации аварийных ситуаций


Представленный в таблице 1.3 и таблице 1.4 подход имеет феноменологический описательный характер, однако при использовании статистического материала и баз данных по авариям очевидно можно перейти к количественному вероятному представлению описанных выше зависимостей.

В заключении этого раздела отметим, что атмосферные явления не исчерпывают внешних условий, которые можно рассматривать в качестве аварийного фона. Такие фоновыми условиями могут быть различные физические воздействия: тепловые, радиация, вибрации, инсоляции и наличие источников химически активных реагентов.

Указанные факторы, как правило, не учитываются при прогнозах аварий из-за их кажущейся незначительности, что иногда может привести к большим ошибкам.

В качестве примера рассмотрим температурный фактор. Известно, что регулярно в одном из наиболее жарких месяцев (как правило в мае) на складах боеприпасов происходят самопроизвольные загорания и взрывы. Жертвой таких инцидентов являются люди, в огне пожаров гибнут снаряды сотнями вагонов.

Взрываются почему-то боеприпасы с вышедшими сроками хранения. Официально такие инциденты объясняются халатностью военнослужащих при курении, а в средствах массовой информации, кроме того, желанием военных во что бы то ни стало избавиться от бесполезного и опасного груза (самоподрывы). Никто почему-то не связывает эти аварии с нарушением правил хранения снарядов.

Объяснением, не связанным с «человеческим фактором», является температурный запуск в топливе химических реакций, приводящих к их загоранию или взрыву. Ракетное топливо в просроченных снарядах давно потеряло свои первоначальные физико-химические свойства из-за процессов эрозии, растрескивания и т. п. Таким образом, сравнительно небольшое повышение температуры внешней среды может инициировать наступление аварии нетермостатированных боеприпасов.

В работе [102] сделана попытка связать аварийную ситуацию при пожаре с погодными условиями — в частности с температурой воздуха. На основе анализа антропогенных и погодных условий на пожарную обстановку в Красноярском крае сделан вывод о том, что частота пожаров (количество загораний в сутки) и их распределение по причинам возникновения в разные периоды времени определяются преимущественно двумя факторами. Первый из них — уровень урбанизации региона, который выражается через численность населения.

Второй фактор — температура окружающего воздуха. Представленные в этой работе эмпирические уравнения для относительного количества пожаров в сутки, по утверждению авторов, могут использоваться для прогноза обстановки с пожарами в регионах. Причем достоверный прогноз ошибки прогноза пожара составляет не более 10 %.

Аналогичным эффектом «спускового крючка» обладают, очевидно, и некоторые другие физические воздействия. Весь вопрос в их интенсивности, времени и продолжительности действия.

<<< Назад
Вперед >>>

Генерация: 5.007. Запросов К БД/Cache: 3 / 0
Вверх Вниз