Книга: Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий

Аргументы физиков

<<< Назад
Вперед >>>

Аргументы физиков

Почему были уверены, что эти ядра — новые? Во-первых, потому, что ни одно из известных прежде спонтанно делящихся ядер не имело подобных характеристик. Во-вторых, потому, что изменение условий реакции — замена изотопа свинца в качестве мишени или изотопа хрома (бомбардирующего снаряда) — исключало наблюдавшийся эффект. Никто, конечно, не считал напрямую — это невозможно, — сколько протонов содержится в новых ядрах. В экспериментах регистрировали лишь осколки спонтанно делившихся ядер. Однако оснований полагать, что эти осколки чуть раньше составляли ядра 106-го элемента, было более чем достаточно.

Для синтеза и «ловли» осколков сконструировали специальную установку. Она достаточно проста: вращающийся с постоянной скоростью полый цилиндр, покрытый снаружи тонким слоем моноизотопного свинца. На эту мишень и направляют под определенным углом пучок ускоренных в циклотроне ионов хрома. За то время, какое «живет» ядро 106-го элемента, участок мишени успевает выйти из-под ионного пучка, и осколки летят на слюдяные детекторы спонтанного деления, которыми окружена мишень. Потом следы осколков дополнительно протравливают и но числу треков на разных детекторах определяют период полураспада…


Схема экспериментальной установки, на которой открыт 106-й элемент. Быстро вращающаяся с постоянной скоростью цилиндрическая камера, наружная поверхность которой покрыта тонким слоем моноизотопного свинца. На эту свинцовую мишень под определенным углом направляли пучок ускоренных в циклотроне ионов хрома. За то время, какое «живет» ядро 106-го элемента, участок мишени успевает выйти из-под ионного пучка, и осколки деления летят на слюдяные детекторы, которыми окружена мишень. Потом следы деления дополнительно протравливают и по числу треков на разных детекторах вычисляют период полураспада  

Мысль о том, что оболочечные эффекты, действующие в «магических» и «околомагических» ядрах, могут помочь нуклеосинтезу, разумеется, требовала и теоретического обоснования, и экспериментальной проверки. Поэтому один из теоретиков — А.С. Ильинов заранее скрупулезно высчитывал вероятности образования новых ядер и величины барьеров, стоящих на пути синтеза.

Расчеты говорили, что стоит пробовать. Первой такой пробой, моделью будущих синтезов, должно было стать получение новым методом какого-либо известного изотопа. Но какого?

Во-первых, это должен быть хорошо изученный и спонтанно делящийся изотоп. Спонтанное деление — любимый конек, регистрация его осколков для дубненских специалистов — задача привычная и приятная. Во-вторых, должна быть принципиальная возможность получить этот изотоп в ядерной реакции между свинцом и ионом, значительно более тяжелым, чем использовавшиеся прежде, например с аргоном.

Была избрана реакция

20882Pb + 4018Ar ? 244100Fm + 410n.

Свойства фермия-244, впервые полученного в США в 1967 г., хорошо известны. Ядра этого изотопа с вероятностью, близкой к 100%, испытывают спонтанное деление. Период полураспада — 3,3 миллисекунды.

Расчеты показали, что вероятность ядерной реакции Pb+Ar ? Fm всего в 10 раз меньше, чем классической ядерной реакции с участием урана и кислорода. А раз так, то, располагая чувствительной аппаратурой, можно было приступать к эксперименту. Попробовали — получили спонтанно делящийся излучатель с периодом полураспада 4±0,5 миллисекунды. То, что надо! Модель работала, оболочечные эффекты ядер свинца помогли получить известный излучатель. За ним — еще несколько, тоже известных.

Вторым этапом работы стал синтез новым методом новых изотопов «старых» элементов. Здесь самыми интересными оказались опыты по синтезу нейтронодефицитных изотопов курчатовия — 254Ku, 255Ku и 256Ku. В качестве снарядов использовали ионы титана, мишени опять были свинцовыми. Главным результатом этого этапа оказался даже не сам факт получения трех новых ядерных разновидностей. Нанесенные на график величины периодов полураспада этих ядер по спонтанному делению коренным образом меняли представления о систематике времени жизни изотопов элемента № 104. Объяснимы стали некоторые факты из прошлого.

Здесь нам, пожалуй, не обойтись без помощи графики. На рисунке внизу показана систематика периодов спонтанного деления для изотопов нескольких самых тяжелых элементов с четными номерами. По горизонтальной оси отложено число нейтронов в ядре, по вертикальной — периоды полураспада по спонтанному делению. Экспериментальные кривые — времена жизни изотопов элементов № 98, 100 и 102 — образовывали подобие елки без ствола. Ствол, впрочем, можно провести, соединив высшие точки трех кривых. Что тогда мы увидим? «Ветвь» 102-го элемента расположена ниже «ветви» 100-го, а та, в свою очередь, ниже «ветви» элемента № 98. Чем больше атомный номер элемента, тем меньше «живут» его изотопы — логично. И автор этой систематики А. Гиорсо провел пунктиром еще одну «ветвь» — для элемента № 104.


Систематика периодов полураспада по спонтанному делению в логарифмической шкале — так расшифровывается обозначение у вертикальной оси lg T1/2(sf) — для изотопов 98, 100, 102 и 104-го элементов. Сплошными линиями соединены экспериментальные точки. Пунктирная линия внизу — теоретические предсказания американского физика Д. Гиорсо для изотопов 104-го элемента. Черные квадраты — экспериментальные данные для четночетных изотопов курчатовия, светлые — для его нечетных изотопов. Как видим, эксперимент в очередной раз вступил в противоречие о теорией и опроверг основанные на ней прогнозы 

Когда в Дубне получили первые сведения о периодах полураспада изотопов 104-го элемента, их значения легли в стороне от логичной, но сугубо теоретической ветви. Тем не менее именно эта елочка стала для американских физиков главным основанием для того, чтобы считать период полураспада изотопа 260Ku, установленный в Дубне, завышенным и подвергать сомнению исследование в целом.

Но вот на ту же диаграмму легли новые экспериментальные точки, их соединили и увидели, что елки-то нет. У 104-го элемента с увеличением числа нейтронов в ядре растет стабильность, и если есть где-то максимум, за которым последует спад, то этот максимум, видимо, еще не достигнут, он где-то справа. А если так, то ствол аккуратной прежде елочки будет изогнут, как ножка боровика, выросшего под корнями дерева…

Эксперимент опроверг теоретическую систематику Гиорсо. В извечном противоборстве теоретиков и экспериментаторов последние, найдя новые факты, одержали еще одну победу.

Третьим этапом работы с «магическими» мишенями стал синтез нового изотопа нового элемента — 106-го. Когда и как его получили впервые, мы уже знаем, но был и второй эксперимент. Место действия — США, штат Калифорния.

<<< Назад
Вперед >>>

Генерация: 1.569. Запросов К БД/Cache: 3 / 1
Вверх Вниз