Книга: Эволюция биосферы

Генеалогические и экологические связи между организмами

<<< Назад
Вперед >>>

Генеалогические и экологические связи между организмами

Все разнообразие связей между организмами можно подразделить на две большие категории: на связи генеалогические, включающие отношение предков и потомков в пределах одного вида, и на связи экологические, объединяющие различные формы взаимодействия между особями разных видов. Каждая из категорий в свою очередь включает три формы связей: вещественные, энергетические и информационные.

В генеалогической преемственности на первое место выступают связи информационные. Конечно, они осуществляются путем передачи вещества, содержащего некоторый запас энергии. Однако передача вещества и энергии в этом случае отступает на второй план по сравнению с передачей особенностей организации. Кроме того, в генеалогических связях передача всех трех компонентов — вещества, энергии и информации — идет, как правило, в одном направлении: от предков к потомкам.

В экологических связях передача вещества и энергии приобретает несравненно большее значение. Таковы, например, цепи питания, в которых вещество и энергия передаются по трофическим каналам. Однако и вещество, и энергия, участвующие в жизненном процессе, в конечном счете у всех организмов одни и те же. Поэтому совершенно очевидно, что вещественно-энергетические связи не могут быть главным фактором, обеспечивающим разнообразие форм жизни. Для того, например, чтобы лиса поймала и съела зайца, она должна быть лисой, а не просто сгустком вещества и энергии. Таким образом, и при межвидовом взаимодействии, хотя его смысл и заключается в передаче вещества и энергии от одного звена биотического круговорота к другому, на первое место все же выступают особенности организации взаимодействующих организмов, т. е. опять-таки связи информационные. Направление перехода вещества и энергии, с одной стороны, и информации — с другой, при межвидовом взаимодействии может и не совпадать. Скажем, в системе «лиса—заяц» вещество и энергия передаются от зайца к лисе, а информацией они обмениваются оба.

Легко обнаружить два сорта информационных экологических связей: индивидуальные и групповые. Лиса видит зайца, чувствует его запах; обоняние и зрение помогают зайцу уйти от лисы. Таковы индивидуальные информационные связи. Но ведь не все лисы способны ловить зайцев одинаково успешно и не все зайцы попадают лисам в лапы. Очевидно, сохраняются и оставляют большее потомство более чуткие, зоркие и быстрые зайцы, точно так же лучше преуспевают лисы — хорошие охотники.

Так как индивидуальные качества организмов зависят от унаследованных свойств, взаимодействие популяций лис и зайцев неизбежно ведет к изменению наследственных особенностей и тех, и других. Таковы групповые информационные экологические связи. Именно они обусловливают наследственное преобразование экологически связанных популяций разных видов.

Следовательно, за перестройку организации ответственны не вещественные и энергетические связи, а групповые информационные.

Экологические связи между организмами весьма многообразны и не ограничиваются только межвидовыми пищевыми связями. К ним принадлежат:

1. Связь с особями своего вида. В первую очередь взаимоотношение полов, затем различные формы вторичной связи между родителями и потомками, то, что советский генетик А. Н. Промптов (1956) назвал биологическим контактом поколений. Сюда же относятся стадные и стайные инстинкты, а также так называемые социальные инстинкты, особенно развитые у общественных насекомых — пчел, ос, термитов, муравьев.

2. Связь с видами — источниками питания.

3. Противодействие хищникам.

4. Зависимость от паразитов, симбионтов, возбудителей инфекций и эпизоотий.

5. Взаимоотношение с конкурентами.

6. Связь организмов через абиотическую среду: дыхание кислородом, выделяемым растениями, восприятие запахов, распространяющихся в воде или воздухе и благоприятствующих нахождению определенных местообитаний, конкуренция за места обитания.

По этим многочисленным каналам связи в организм течет непрерывный поток информации. Она поступает через воспроизводительные клетки, через пищеварительную систему и органы чувств, обусловливая особенности развития и поведения. Каждый организм выступает как специфический интегратор информации разных степеней специфичности.

Само собой разумеется, что в масштабе биосферы генеалогические и экологические отношения не представляют собой какие-то резко разграниченные группы явлений. Без экологических связей невозможны генеалогические; генеалогические отношения переходят путем дивергенции форм в экологические. Те и другие, следовательно, являются лишь двумя сторонами многообразного процесса эволюции биосферы.

Взаимодействующие организмы представляют собой части одной системы, и поэтому их взаимные отношения оказываются значительно более тесными, чем это обычно представляется. Некоторые иглокожие животные (морские звезды и офиуры), по наблюдениям известного датского биолога Г. Торсона (1955), прекращают питание в момент оседания личинок пластинчатожаберных моллюсков — их будущих жертв — и не питаются в течение одного-двух месяцев. За это время биомасса моллюсков возрастает минимум в 500 раз. Без такого приспособления исчезли бы и моллюски, и питающиеся ими иглокожие. Подобное приспособление — результат сопряженной эволюции иглокожих и пластинчатожаберных моллюсков.

К той же категории фактов относятся взаимоотношения паразита и хозяина, возбудителя инфекций и инфицируемого организма. При длительном (в историческом аспекте) взаимодействии паразита и хозяина паразит нередко перестает вызывать болезненные явления, агрессивность микроорганизма уравновешивается иммунобиологическими реакциями макроорганизма.

Агрессивность микроорганизма или вредителя возрастает во много раз в тех случаях, когда они встречаются с существами, к ним не приспособленными. Африканские антилопы — основные хозяева паразитического жгутиконосца Trypanosoma brucei, заражение которым не вызывает у них никаких болезненных явлений. Та же самая трипаносома, заражая рогатый скот и лошадей, приводит их к гибели. (Естественно, она погибает при этом сама.) «Очевидно, — пишет известный советский зоолог В. А. Догель, — антилопы, с незапамятных времен заражающиеся Т. brucei, успели приобрести известный иммунитет к данному паразиту, тогда как завезенные из Европы домашние животные такого иммунитета не выработали»[80].

Пока колорадский жук питался дикими пасленовыми, он ничем не выделялся среди других фитофагов. Перейдя в Европе на культурные сорта картофеля, это насекомое сделалось опаснейшим вредителем.

Французский энтомолог Ж. Фабр (1963) обнаружил, что личинка осы сколии, паразитируя на парализованной личинке жука-бронзовки, начинает питаться жировым телом и лишь под конец роста поедает наиболее жизненно важные ткани, в частности нервную систему. Происходит то, что Фабр очень метко назвал «едой по правилам». Однако, что это за правила? Известно, что при голодании животных первыми расходуются запасы жира и лишь в последнюю очередь наиболее важные для поддержания жизни ткани; дольше всего сохраняется нервная система. По-видимому, открытый Фабром инстинкт «питания по правилам» представляет собой механизм перекачки питательных веществ из личинки бронзовки в растущую личинку сколии, аналогичный механизму траты тканей во время голодания. Личинке сколии не нужно «обучаться» какому-то новому способу, ей достаточно использовать уже имеющийся механизм. Получается, что личинка бронзовки как бы кормит личинку сколии. Очевидно, подобные отношения могли развиться лишь в течение миллионов лет сопряженной эволюции сколии и бронзовки. За это время сколия приобрела способность включаться в ход нормального физиологического процесса личинки бронзовки, ориентируя его в свою пользу. Аналогичные явления наблюдаются на молекулярном уровне: нуклеиновая кислота фага, проникая в бактерию, использует ферментативный аппарат и энергетику клетки для репродукции вирусных частиц. В обоих случаях паразит и хозяин на каком-то этапе образуют единую систему, когда они внутренне соответствуют друг другу как части одного организма. Подобные явления происходят при симбиозе водоросли и гриба у лишайников, бактерий и рыб при формировании у последних органов свечения и т. п. Два обстоятельства обусловливают возможность подобного соответствия: единство биохимического субстрата всех организмов и длительность сопряженной эволюции.

<<< Назад
Вперед >>>

Генерация: 3.345. Запросов К БД/Cache: 3 / 0
Вверх Вниз