Книга: Происхождение жизни. От туманности до клетки

Треозонуклеиновые и гликоленуклеиновые кислоты

<<< Назад
Вперед >>>

Треозонуклеиновые и гликоленуклеиновые кислоты

Гораздо больше внимания ученые уделяли поиску альтернатив сахарофосфатному остову РНК, потому что «слабым звеном» РНК является рибоза. Она менее устойчива, чем другие сахара (глюкоза, эритроза, глицеральдегид), и быстрее разлагается. В составе цепочки РНК много неприятностей доставляют гидроксильные (-ОН) группы на втором углеродном атоме каждой рибозы. Они облегчают разрыв цепи РНК. Современная генетическая молекула, ДНК, не имеет этих групп и поэтому, в отличие от РНК, устойчива к щелочам, ионам железа, переносит более высокие температуры, а в нормальных внутриклеточных условиях в десятки тысяч раз менее склонна к самопроизвольным разрывам по сравнению с РНК. Поэтому много исследований было посвящено двум ксенонуклеиновым кислотам, в которых рибоза заменена на четырехуглеродный сахар (треозу) или трехуглеродный спирт (глицерин) – треозонуклеиновая кислота, ТНК, и гликоленуклеиновая кислота, ГНК (рис. 12.8).


Молекулы треозонуклеиновой кислоты (ТНК) образуют двойные спирали друг с другом и с РНК благодаря комплементарным парам азотистых оснований. Прочность связи двух нитей в таких комплексах примерно такая же, как в двуспиральной ДНК (Schoning et al., 2000). Были получены мутантные формы РНК-полимеразы, которые способны строить ТНК на матрице ДНК, и с их помощью удалось адаптировать для ТНК технологию искусственного отбора (SELEX), применяемую для получения новых рибозимов. Так, из ТНК удалось получить аптамеры – молекулы, которые избирательно связывают одно определенное вещество, в данном случае белок тромбин (Yu et al., 2012).

Гликоленуклеиновая кислота (ГНК) была подробно изучена на несколько лет позже, чем ТНК (Zhang et al., 2005). Молекулы ГНК, подобно ТНК, образуют двойную спираль друг с другом и с РНК. Форма нити ГНК такова, что уотсон-криковские пары в ней оказываются прочнее, чем в РНК, поэтому копирование ГНК на заре жизни могло быть более точным, чем РНК. С другой стороны, эта же особенность ГНК требует более высокой температуры, чтобы расплести ее двойные спирали для следующего цикла копирования.

ТНК и ГНК, подобно ДНК, не имеют свободных гидроксильных (-ОН) групп рядом с фосфоэфирной связью и поэтому устойчивы к щелочам, железу и высокой температуре. Однако эти 2' – гидроксильные группы, которые делают РНК уязвимой, одновременно важны для ее каталитических функций. Попытки получить дезоксирибозимы из ДНК показали, что они встречаются в смеси молекул случайной последовательности с вероятностью в 10–100 раз меньше, чем аналогичные по функциям рибозимы из РНК (Silverman, 2004). Скорее всего, ТНК и ГНК по каталитической активности уступают РНК и близки к ДНК.

Еще один аргумент против роли ТНК и ГНК в происхождении жизни связан с проблемой соединения азотистых оснований с сахарами. Как обсуждалось в главе 7, азотистые основания невозможно правильно соединить с рибозой или другим сахаром без помощи ферментов. Все недавно открытые обходные пути получения нуклеотидов, в которых эта проблемная связь образуется до завершения сборки азотистого основания, строго привязаны к химическим свойствам рибозы и непригодны для получения нуклеотидов ТНК и ГНК. Наконец, факт существования ДНК, которая по надежности хранения информации не лучше ТНК, но заметно сложнее в синтезе и явно произошла в процессе эволюции от РНК уже после появления белков (подробнее см. в главе 14), тоже говорит против древней жизни с ТНК или ГНК. Если эти ксенонуклеиновые кислоты когда-либо использовались жизнью, то сложно придумать причину, по которой столь простые и надежные генетические молекулы были бы потеряны и затем заменены более сложной ДНК, – жизнь редко полностью отказывается от проверенных решений.

<<< Назад
Вперед >>>

Генерация: 5.218. Запросов К БД/Cache: 3 / 0
Вверх Вниз