Книга: Происхождение жизни. От туманности до клетки

Жизнь без полимеров

<<< Назад
Вперед >>>

Жизнь без полимеров

Еще более радикальной альтернативой РНК-мира стали гипотезы протометаболических циклов. Согласно им на древней Земле сначала сложилась сеть химических реакций между малыми молекулами, аналогичная реакциям обмена веществ в клетках. Катализаторами этих реакций служили минералы и сами участвующие в них малые молекулы. Нуклеотиды появились как один из продуктов этой сети реакций. Возникновение РНК, рибозимов, а затем и белков лишь придало устойчивость и увеличило скорость этой сети реакций.

Конечно, теория РНК-мира не отрицает, что какие-то реакции между малыми молекулами стали источником нуклеотидов и предшествовали появлению РНК. Разногласия между гипотезой протометаболических циклов и гипотезой РНК мира (в широком смысле, включая ПНК и другие полимеры, способные к комплементарному соединению в двойные спирали; в англоязычной литературе эти группы гипотез называются metabolism-first и replication-first) заключаются в другом. В гипотезе протометаболических циклов предполагается, что сеть реакций была способна к эволюции и усложнению, т. е. у нее могло быть много вариантов, каждый из которых был способен воспроизводить себя. Такое наследование, где сохраняется и воспроизводится химический состав смеси реагирующих веществ, получило название композиционного, или концентрационного генома. Теория РНК-мира же предполагает, что наследование, а следовательно, и дарвиновская эволюция возможны только на основе полимерных молекул.

В большинстве версий протометаболической гипотезы в качестве исходной части сети реакций обмена веществ рассматривается центральный круговорот обмена веществ – цикл Кребса. В статье Лесли Оргела (Orgel, 2008) рассматриваются препятствия для прохождения этого цикла реакций на минералах без помощи ферментов. Серьезной проблемой становится специфичность катализа. Например, в восстановительном цикле Кребса двойная связь C=C в одном случае должна восстанавливаться (при образовании янтарной кислоты), а в другом – к ней должна присоединяться молекула воды (при превращении аконитовой кислоты в лимонную). Если аконитовая кислота подвергнется восстановлению (а в тех условиях, где идет восстановительный цикл Кребса, эта реакция будет необратима), то вещество будет уходить из цикла в побочную реакцию. Аналогично, если какой-то минерал катализирует распад лимонной кислоты на уксусную и щавелевоуксусную, то он же будет вызывать распад и других кислот цикла.

Есть и другие мнения о том, какие вещества составляли первые автокаталитические циклы. Например, Альберт Эшенмозер предполагает (Eschenmoser, 2007), что исходным веществом, питающим цикл, был не углекислый газ, а синильная кислота (HCN). Молекулы синильной кислоты в воде самопроизвольно объединяются по четыре, образуя тетрамер. Эти тетрамеры при нагревании или облучении превращаются в аденин и гуанин, а при низкой температуре и в темноте постепенно подвергаются гидролизу. При этом образуются органические кислоты, близкие к кислотам цикла Кребса, – гидрокси-щавелевоуксусная, дигидрокси-фумаровая. Дальше из этих кислот могут получаться простейшие сахара (гликольальдегид, глицеральдегид) и более сложные кислоты цикла Кребса, такие как лимонная. Важно, что альдегиды (формальдегид, ацетальдегид, гликольальдегид) ускоряют сборку тетрамеров синильной кислоты и образуются в ходе гидролиза этих же тетрамеров. Иными словами, здесь возможно образование разных автокаталитических циклов и накопление многих веществ, важных и в современной биохимии.

К сожалению, в ходе экспериментов так и не удалось провести эти реакции достаточно эффективно, чтобы заработал автокатализ и производительность цикла стала расти. Для восстановительного цикла Кребса, как мы упоминали в прошлой главе, удалось провести только шесть реакций из одиннадцати. В качестве источника энергии при этом использовалось ультрафиолетовое излучение, а катализатором служили кристаллы сульфида цинка (Guzman, Martin, 2009).

Идея жизни без полимеров вызывает скепсис у многих ученых не только потому, что конкретные ее варианты не удается воспроизвести в лаборатории. Сомнения вызывает сама концепция концентрационного генома – возможности хранения информации в химическом составе смеси веществ. В любом сколько-нибудь значительном объеме будет так много молекул, что их концентрации могут изменяться плавно, без заметных скачков. Например, в объеме бактериальной клетки (размер – 0,001 мм, объем – 10–9 мм?) содержится около 1010 атомов и, следовательно, около 108 молекул-мономеров, таких как аминокислоты и нуклеотиды. Обмен веществ типичной бактерии включает несколько сотен разновидностей малых молекул (аминокислоты, нуклеотиды, сахара, липиды, витамины и промежуточные продукты, такие как кислоты цикла Кребса). Следовательно, в объеме бактериальной клетки будет примерно от 10 000 до 1 млн малых молекул каждого сорта, и их концентрация может меняться ступеньками по 0,01 % и меньше, что совершенно неразличимо на биохимическом уровне точности. Случайные колебания концентраций веществ, вызванные тепловым движением молекул, легко разрушат хранимую таким образом информацию. Здесь уместен пример из области электроники – при аналоговой передаче сигнала он неизбежно искажается и загрязняется шумами, поэтому сейчас для записи и передачи звука и других аналоговых сигналов их переводят в цифровую форму – последовательность нулей и единиц, не подверженную слабым помехам.

Наша ДНК тоже представляет собой цифровую запись информации. Нуклеотидов всего четыре, и вероятность превращения одного из них в другой очень мала. Вероятность ошибки при копировании ДНК выше, но сложные и совершенные ферменты позволяют снизить и ее до одной ошибки на 100 млн нуклеотидов. К идее, что генетическая информация может надежно храниться только в цифровом виде, первым подошел физик Эрвин Шрёдингер в своей пророческой работе 1944 года «Что такое жизнь?». К тому времени было известно, что наследственная информация хранится в очень малом объеме, соответствующем крупной молекуле, и единственный квант рентгеновского излучения может вызвать мутацию. Пытаясь понять, как такие маленькие структуры могут надежно сохраняться годами, он пришел к идее «апериодического кристалла». Значительно позже Докинз предположил (Dawkins, 1996), что надежное хранение генетической информации возможно только в виде последовательности разных мономеров в полимерной молекуле, независимо от химической природы жизни. Строгое доказательство этого было выведено российским математиком Сергеем Вакуленко (Vakulenko, Grigoriev, 2008).

Ненадежность «концентрационного генома» можно проиллюстрировать на примере действия радиации на геномы обычные. Как известно, радиация очень опасна для живых организмов, особенно сложных. Например, для человека поглощенная доза излучения 10 грей приводит к смерти в течение двух-трех недель. Единица поглощенной дозы, грей, определяется как 1 джоуль излучения, переданный на 1 кг массы тела. Иначе говоря, смертельная доза радиации в пересчете на привычные единицы энергии – это всего лишь 700 джоулей, или 160 калорий. По всем обычным энергетическим масштабам человеческого организма это смехотворно мало. Это меньше, чем тепловая энергия, которую он получает от одного стакана умеренно горячего чая с температурой 40 °C. От стакана горячего чая еще никто не умирал. Почему же радиация так опасна?

Отличие радиации от тепла в том, что тепловая энергия распределена на гигантское количество мелких порций – движений отдельных молекул. Радиация же представляет собой довольно большие порции энергии в малом объеме – гамма-кванты, нейтроны, быстрые заряженные частицы. При встрече такой частицы с молекулой ДНК или белка большая порция энергии точечно воздействует на одну связь между атомами и, естественно, ее разрывает. Тепловые движения соседних молекул воздействуют на каждое звено ДНК миллиарды раз в секунду, но не превышают ее предела прочности. Если мы сравним тепло и радиацию с другими формами энергии, то окажется, что 700 джоулей вполне могут быть опасны, если они взаимодействуют с живым организмом в концентрированной форме. Например, 700 джоулей механической энергии организм человека получает при падении с высоты одного метра или от двух выстрелов из пистолета в упор. Понятно, что второй случай гораздо опаснее.

Тепловая энергия настолько безопасна для нас, как и для любого другого живого организма, потому что она распределена на мелкие порции, далеко не достигающие предела прочности ДНК. Концентрационный геном такого предела прочности не имеет и будет накапливать изменения просто от тепловых движений молекул. Поэтому при любой температуре кроме абсолютного нуля концентрационный геном будет разрушаться, как ДНК под действием радиации.

Если же для хранения наследственной информации важна не точная концентрация вещества, а только есть оно или нет, то информационная емкость подобной системы слишком мала – в ней должен быть свой автокаталитический цикл на каждый бит хранимой информации. Разные автокаталитические циклы из малых молекул не всегда хорошо уживаются друг с другом, поэтому вряд ли в одном объеме их может быть больше десяти. Для записи десяти бит информации достаточно последовательности из трех нуклеотидов. Так что аналоговый концентрационный геном ненадежен, а цифровой концентрационный геном (со своим автокаталитическим циклом на каждый бит информации) имеет ничтожную емкость по сравнению с простейшими молекулами РНК и не может поддерживать эволюцию.

Итак, мы видим, что нет убедительных доводов в пользу какой бы то ни было живой системы, предшествовавшей миру РНК. Только с появлением генетического полимера становятся возможными устойчивое воспроизведение тысяч разновидностей похожих, но разных живых систем, а значит, и эволюция путем мутаций и естественного отбора. Затем эта эволюция превратила РНК-организмы в клетки, оснащенные белками, ДНК и клеточной мембраной, изолирующей внутреннюю среду. Можно полагать, что клеточная жизнь вышла из геотермальной колыбели, освоила всю поверхность планеты и стала глобальной силой, регулирующей состав атмосферы и климат. В третьей части книги мы увидим, как это происходило.

<<< Назад
Вперед >>>

Генерация: 6.134. Запросов К БД/Cache: 3 / 0
Вверх Вниз