Книга: Жизнь замечательных веществ

2016 год. Очередное обновление Периодической системы завершено

<<< Назад
Вперед >>>

2016 год. Очередное обновление Периодической системы завершено


В канун 2016 года химиков, да и всех, кто интересуется современной наукой, ждала отличная новость, даже четыре. Тридцатого декабря 2015 года рабочая группа Международного союза по теоретической и прикладной химии (IUPAC) выпустила коммюнике, в котором констатировала, что, изучив все имеющиеся и опубликованные в литературе данные относительно синтеза химических элементов 113, 115, 117 и 118, совместная комиссия IUPAC и группа Международного союза по теоретической и прикладной физике (IUPAP) подтверждает, что синтез элементов был проведен. Заявки же создателей-первооткрывателей на приоритетность открытия соответствуют критериям признания, сформулированными IUPAP/IUPAC в 1991 году.

Новые элементы завершили 7-й ряд Периодической системы; открывшие (точнее – синтезировавшие) их исследователи из Японии, России и США весной 2016 года предложили для них постоянные названия (на латинском и английском языках) и символы, которые после пятимесячного общественного обсуждения уже ближе к концу 2016 года были официально утверждены IUPAC, и теперь эти элементы-тяжеловесы входят в Периодическую систему уже под новыми, узаконенными именами (до официального утверждения названий в 2016 году эти элементы в таблице Менделеева обозначались порядковыми латинскими числительными, соответствующими их атомному номеру).

В соответствии с решением IUPAC приоритет в открытии элемента с номером 113 принадлежит Институту физико-химических исследований Японии (RIKEN). Элемент вполне закономерно стал называться нихонием (Nihonium, Nh) в честь самоназвания Страны восходящего солнца – Нихон.


Впервые японские исследователи сообщили о синтезе нихония методом холодного слияния ядер в 2004 году, а более убедительные доказательства своего открытия предоставили в 2012-м. За это время им удалось не только получить три ядра этого элемента с помощью бомбардировки мишени из висмута-208 ядрами цинка-70, но и изучить схему его распада, которая тоже довольно необычна для трансфермиевых элементов: нихоний претерпевает шесть последовательных ?-распадов, в итоге превращаясь в менделеевий-254 («Journal of the Physical Society of Japan», 2012, 81, 103201, doi: 10.1143/JPSJ.81.103201).

20883Bi + 7030Zn ? 278113Nh + 10n

278113Nh ? 254101Md + 642He

Свою заявку на открытие нихония, который тогда еще назывался унунтрием, подавали также российские и американские физики-ядерщики. В 2004 году в результате совместного эксперимента, целью которого был синтез элемента № 115 с помощью горячего слияния ядер, физики из Объединенного института ядерных исследований в Дубне и Ливерморской национальной лаборатории в Калифорнии фиксировали среди продуктов последующего распада элемента № 115 другой нуклид нихония – 286113Nh. В ходе совместной работы российской и американской исследовательской групп над этим проектом было обнаружено около сотни ядер элемента, в ядре которого содержится 113 протонов, к тому же нуклид 286113Nh оказался более стабильным – время его жизни составляло в среднем 19,6 секунды.


Тем не менее, принимая решение о том, кому принадлежит пальма первенства в открытии неуловимого сто тринадцатого, комиссия IUPAP/IUPAC решила, что главное не количество экспериментов, а их качество – эксперименты японских физиков были признаны более чистыми и информативными. Полученные исследователями из RIKEN легкие изотопы нихония в ходе своего распада превращались в уже хорошо изученные нуклиды, например, борий-266, в то время как распады тяжелых изотопов Nh протекают с образованием новых, ранее не наблюдавшихся ядер, состав и строение которых еще требуют дополнительных доказательств.

Таким образом, элемент № 113 стал и первым химическим элементом, и первым искусственным элементом, название которому придумают ученые не из Европы и не из Америки. Еще в 2004 году после первого удачного эксперимента японские ядерщики предположили, что в случае успеха назовут этот элемент в честь своей страны, что, как мы видим, и получилось.


Надо отметить, что японским химиком удалось водрузить свой флаг в Периодической системе со второго раза, а первая попытка закрепиться в таблице Менделеева была сделана в начале ХХ века. В 1909 году профессор Токийского университета Масатака Огава заявил, что, анализируя минералы торианит, реинит и молибденит, обнаружил элемент № 43, который назвал «ниппонием» (nipponium, Np). Впоследствии стало ясно, что «экамарганец»-технеций, не имея стабильных изотопов, не может содержаться в земной коре и, как показали исследования 2004 года («Spectrochimica Acta Part B», 2004, 59, 1305–1310, doi: 10.1016/j.sab.2003.12.27), «ниппоний» Огавы – это на самом деле открытый еще в 1871 году рений.


Хотя IUPAC/IUPAP присудил первенство в открытии нихония японским физикам, специалистам из Дубны и их американским коллегам тоже есть чем гордиться, и они тоже приняли деятельное участие в придумывании названий для своих открытий. Приоритет в открытии элемента № 115 был присужден ученым из ОИЯИ, Ливерморской национальной лаборатории и Национальной лаборатории Ок-Ридж, которые в совместной работе получали ядра этого элемента, бомбардируя мишень из америция-243 ядрами кальция-48 («Physical Review C», 2005, 72, 3, 034611, doi: 10.1103/PhysRevC.72.034611). Среднее время жизни наиболее устойчивых нуклидов составляло 220 миллисекунд. Элемент № 115 получил название московий (Moscovium, Mc) в честь Московской области, где находится Объединённый институт ядерных исследований.

24395Am + 4820Ca ? 288115Mc + 3 10n

Результаты синтеза московия были подтверждены контрольными экспериментами международной группы исследователей во главе с физиками из Университета Лунда (Швеция) и в Институте по изучению тяжелых ионов имени Гельмгольца (Дармштадт, Германия).


ОИЯИ, Ливерморская национальная лаборатория и Национальной лаборатории Ок-Ридж оказались первооткрывателями и «эка-астата» – элемента № 117. При его получении в качестве мишени для ядер кальция-48 был выбран берклий («Physical Review Letters», 2010, 104, 14, 142502, doi: 10.1103/PhysRevLett.104.142502). Ядра этого элемента в среднем жили около 50 миллисекунд. Существование сто семнадцатого элемента также подтвердилось в экспериментах Института по изучению тяжелых ионов имени Гельмгольца.

24997Bk + 4820Ca ? 293117Ts + 4 10n

Согласно правилам наименования новых элементов, принятым IUPAC в 2002 году, для обеспечения лингвистического однообразия всем новым элементам должны даваться названия, оканчивающиеся на – ий (в английской и латинской версии названия – «-ium»). Однако в английском языке названия элементов 17-й группы Периодической системы (галогенов) традиционно имеют окончание «-ine»: Fluorine – фтор, Chlorine – хлор, Bromine – бром, Iodine – иод, Astatine – астат. Поэтому вскоре после признания открытия 113-го, 115-го, 117-го и 118-го элементов в правила были внесены изменения, согласно которым, по принятой в английской химической номенклатуре традиции, элементам 17-й группы на английском и латинском языках должны даваться названия, заканчивающиеся на «-ine». Не дожидаясь этого решения, уже через неделю после заявления IUPAC о подтверждении синтеза элемента № 117 7 января 2016 года британский химик Кэт Дэй разместила в Интернете петицию, в которой предложила назвать этот элемент «октарином» (octarine, Oc) в честь «восьмого цвета радуги» из романов о Плоском мире британского писателя Терри Пратчетта, скончавшегося в марте 2015 года. По Пратчетту, октарин могут видеть только волшебники (и еще кошки), тем не менее он вполне реален и указывает на присутствие магии. Предложенное имя вполне коррелировало с англоязычными названиями галогенов, но первооткрыватели сто семнадцатого элемента решили по-своему и назвали его название «теннессин» (Ts Tennessine) в знак признания вклада штата Теннесси, в том числе Национальной лаборатории Ок-Ридж, Университета Вандербильта и Университета Теннесси в Ноксвилле, в изучение сверхтяжёлых элементов.


И наконец, открывателями самого тяжелого на настоящий момент элемента, завершающего седьмой ряд Периодической системы, – «эка-радона», элемента с порядковым номером 118, были признаны ученые из ОИЯИ и Ливерморской национальной лаборатории. При получении этого элемента мишенью для луча из ядер кальция-48 стал калифорний-249 («Physical Review C», 2006, 74, 4, 044602; doi: 10.1103/PhysRevC.74.04460).

24998Cf + 4820Ca ? 294118Og + 3 10n

Элемент № 118 находится в группе инертных газов, которые, за исключением гелия, традиционно имеют окончание «-он» (-on): неон, аргон, криптон, ксенон, радон. Поэтому опять в 2016 году в правила IUPAC были внесены изменения, согласно которым по принятой в химической номенклатуре традиции элементам 18-й группы (группы инертных или благородных газов) должны даваться названия, заканчивающиеся на «-on». Элемент № 118 получил название «оганесон» (Oganesson, Og) в честь академика РАН Юрия Цолаковича Оганесяна, научного руководителя Лаборатории ядерных реакций им. Г. Н. Флёрова того самого дубнинского ОИЯИ, за его новаторский вклад в исследование трансактиноидовых элементов. Научные достижения Ю.Ц. Оганесяна включают в себя открытия сверхтяжёлых элементов и значительные достижения в области ядерной физики сверхтяжёлых ядер, включая экспериментальное свидетельство существования острова стабильности. Таким образом, Оганесян оказался вторым ученым после Гленна Сиборга, именем которого химический элемент был назван прижизненно (название «сиборгий» было утверждено в 1997 году, а Сиборг, участвовавший в открытии плутония и девяти других трансурановых элементов, скончался 25 февраля 1999 года).


У оганесона, как и у нихония, тоже непростая история открытия. Впервые о его синтезе сообщили физики из Беркли в 1999 году, однако синтез элемента 118 по заявленной методике не удалось воспроизвести в нескольких центрах ядерных исследований – российском, немецком и американском, из-за чего это первое заявление было признано ошибочным («Physical Review Letters», 2002, 89, 3, 039901, doi: 10.1103/PhysRevLett.83.1104), а его авторов даже обвиняли в фальсификации результатов.

Заполненный седьмой ряд Периодической системы не предел – учёные всегда готовы смело идти за пределы изведенного, туда, где не ступала нога человека. Уже анонсированы планы нескольких ядерных центров синтезировать элементы с номерами 119 и 120. Более того, еще в 2012 году в Институте по изучению тяжелых ионов имени Гельмгольца в течение пяти месяцев предпринимали попытки получить ядра химических элементов со ста девятнадцатью и ста двадцатью протонами, хотя и безрезультатно. Но как оптимистично полагает физик-ядерщик из Университета Ливерпуля Рольф-Дитмар Херцберг, существующие методы синтеза сверхтяжелых элементов позволят справиться и с этой задачей. Однако и Херцберг, и другие его коллеги сходятся во мнении, что шансы на получение элементов с номерами бо?льшими, чем 120, исчезающе малы.

Ускорители частиц дня сегодняшнего могут посылать на мишень 1012 ядер ежесекундно. Тем не менее направление на цель большего количества ядер может просто «сжечь» и мишень, и детектор. Для того чтобы избежать этого, необходимы более эффективные технологии, например, получение большей по размерам мишени и расширение пучка более легких ядер, атакующих мишень, но это, конечно, проще спланировать, чем осуществить, – синтез 20 мг берклия, послужившего сырьем для получения элемента № 117, занял 2 года. Проблему доступности мишеней может решить строящаяся в Дубне «Фабрика сверхтяжелых элементов», вряд ли в скорое время стоит ждать очередного прорыва в заполнении новых клеток таблицы Менделеева.


Тем не менее исследователи не теряют бодрости духа. Есть мнение, что нам удастся добраться до элемента № 124 в течение ближайших двух-трех десятилетий. В немалой степени это мнение основано на том, что ещё пятнадцать лет назад было сложно предположить, что мы зайдём так далеко, как зашли. Охота на новые элементы была и остается движущей силой развития технологии.


Ещё одна идея, которая может позволить выйти за границы изведанного, – попытка проведения реакций ядерного обмена. Как объясняет суть этого подхода эксперт из Института Гельмгольца Кристоф Дулльманн, обстрел урановой мишени ядрами урана не приведет к их слиянию, однако сталкивающиеся ядра могут обмениваться протонами и нейтронами, в результате чего мы можем получить ядро, содержащее, например, 120 протонов. Такой ядерный обмен может стать маршрутом для получения нуклидов, которые нельзя получить ни горячим, ни холодным слиянием.

Сверхтяжелые элементы отличаются небольшими временами жизни, что не позволяет применять их на практике, однако их изучение даёт возможность физикам и химикам лучше понять строение атомного ядра и получить еще более точные модели сильных внутриядерных взаимодействий, предсказать устойчивость и неустойчивость различных нуклидов.

Теоретические предсказания того, какую часть таблицы Менделеева ещё хотя бы принципиально можно заполнить, довольно сильно разнятся. Физик Ричард Фейнман предсказывал, что последним элементом Периодической системы станет элемент № 137. Это предсказание опирается на эйнштейновскую модель относительности: по мере увеличения заряда ядра электроны начинают двигаться все быстрее и быстрее, и в какой-то момент скорость электронов, при которой они не упадут на ядра, должна перевалить за скорость света, что физически невозможно. Другие расчёты говорят о том, что предел Периодической системы расположен гораздо дальше – в районе ядра, содержащего около 170 протонов.

Хотя четыре новобранца таблицы Менделеева живут недолго и самый стабильный из них нуклид – один из изотопов нихония – распадается за 19–20 секунд, исследователи ожидают обнаружить остров стабильности в районе элементов с номерами 120–126. Эти «магические» числа протонов соответствуют полностью заполненным ядерным оболочкам, которые должны быть стабильны, как и полностью заполненные валентные оболочки инертных газов.


Исследователи надеются, что дважды магические изотопы унбинилия и унбигексия (элемента № 126), содержащие и магическое количество протонов, и магическое количество нейтронов, должны жить гораздо дольше, чем другие изотопы этих элементов. Правда, оценка времени жизни этих ядер достаточно сильно различается и может исчисляться как десятками минут, так и миллионами лет. В подтверждение гипотезы «острова стабильности» исследователи уже приводят информацию об устойчивости известных изотопов сверхтяжелых элементов, содержание нейтронов в которых приближается к магическому числу 184. Дулльманн заявляет, что Святым Граалем в синтезе сверхтяжелых элементов является получение ядра со 184 нейтронами, однако пока ещё этот Святой Грааль не стремится открыть себя ищущим его.

* * *

Как-то раз на вводной лекции юрист, читавший студентам-химикам Казанского университета основы правоведения, пытался давить аудиторию на жалость, заявляя, что юристом быть тяжело, слишком много всего приходится держать в голове, законы постоянно меняются, и чтобы остаться на плаву, нужно быть в курсе изменений, а вот у химиков просто не жизнь, а рай – учение Менделеева бессмертно, потому что оно верно. В представлении этого преподавателя Периодическая система казалась такой скрижалью химического завета, изменения в которой просто невозможны. Естественно, это впечатление ошибочно – в таблице Менделеева появляются новые химические элементы, что-то из нее исчезает (вопреки распространенному анекдоту у Менделеева на первом месте был не водород, а невесомый мировой эфир, он же), в результате более точного пересчета могут меняться значения внесенных в Периодическую систему атомных весов и атомных радиусов.


<<< Назад
Вперед >>>
Оглавление статьи/книги

Генерация: 0.588. Запросов К БД/Cache: 0 / 0
Вверх Вниз