Книга: Биология. Общая биология. 10 класс. Базовый уровень

28. Современные представления о гене и геноме

<<< Назад
Вперед >>>

28. Современные представления о гене и геноме

Вспомните!

Что такое ген и генотип?

Что вам известно о современных достижениях в области генетики?

В 1988 г. в США по инициативе лауреата Нобелевской премии Джеймса Уотсона и в 1989 г. в России под руководством академика Александра Александровича Баева были начаты работы по реализации грандиозного мирового проекта «Геном человека». По масштабам финансирования этот проект сравним с космическими проектами. Целью первого этапа работы было определение полной последовательности нуклеотидов в ДНК человека. Сотни учёных многих стран мира в течение 10 лет трудились над решением этой задачи. Все хромосомы были «поделены» между научными коллективами стран – участниц проекта. России для исследования достались третья, тринадцатая и девятнадцатая хромосомы.

Весной 2000 г. в канадском городе Ванкувере подвели итоги первого этапа. Было официально объявлено, что нуклеотидная последовательность всех хромосом человека расшифрована. Трудно переоценить значение этой работы, так как знание структуры генов человеческого организма позволяет понять механизмы их функционирования и, следовательно, определить влияние наследственности на формирование признаков и свойств организма, на здоровье и продолжительность жизни. В ходе исследований было обнаружено множество новых генов, чью роль в формировании организма в дальнейшем предстоит изучить более подробно. Изучение генов ведёт к созданию принципиально новых средств диагностики и способов лечения наследственных заболеваний. Расшифровка последовательности ДНК человека имеет огромное практическое значение для определения генетической совместимости при пересадке органов, для генетической дактилоскопии и генотипирования.

По мнению учёных, если XX век был веком генетики, то XXI век будет веком геномики (термин введён в 1987 г.).

Геномика – наука, которая изучает структурно-функциональную организацию генома, представляющего собой совокупность генов и генетических элементов, определяющих все признаки организма.

Но не только для биологии и медицины оказались важны полученные сведения. На основе знаний структуры генома человека можно реконструировать историю человеческого общества и эволюцию человека как биологического вида. Сравнение геномов разных видов организмов позволяет изучать происхождение и эволюцию жизни на Земле.

Что же представляет собой геном человека?

Геном человека. Вам уже известны понятия «ген» и «генотип». Термин «геном» впервые был введён немецким ботаником Гансом Винклером в 1920 г., который охарактеризовал его как совокупность генов, характерных для гаплоидного набора хромосом данного вида организма. В отличие от генотипа, геном является характеристикой вида, а не отдельной особи. Каждая гамета диплоидного организма, несущая гаплоидный набор хромосом, по сути, содержит геном, характерный для данного вида. Вспомните наследование признаков у гороха. Гены окраски семени, формы семени, окраски цветка есть у каждого растения, они являются обязательными для его существования и входят в геном данного вида. Но у любого растения гороха, как у всех диплоидных организмов, существует два аллеля каждого гена, расположенные в гомологичных хромосомах. У одного растения это могут быть одинаковые аллели, отвечающие за жёлтую окраску горошин, у другого – разные, обусловливающие жёлтую и зелёную, у третьего – оба аллеля будут определять развитие зелёной окраски семян, и так по всем признакам. Эти индивидуальные отличия являются характеристикой генотипа конкретной особи, а не генома. Итак, геном – это «список» генов, необходимых для нормального функционирования организма.

Расшифровка полной последовательности нуклеотидов в ДНК человека позволила оценить общее число генов, составляющих геном. Оказалось, что их всего около 30–40 тыс., хотя точное число пока не известно. Раньше предполагали, что количество генов у человека раза в 3–4 больше – около 100 тыс., поэтому данные результаты стали своего рода сенсацией. У каждого из нас генов всего в 5 раз больше, чем у дрожжей, и всего в 2 раза больше, чем у дрозофилы. По сравнению с другими организмами мы имеем не так уж много генов. Может быть, существуют какие-то особенности в строении и функционировании нашего генома, которые позволяют человеку быть сложноорганизованным существом?

Строение гена эукариот. В среднем на один ген в хромосоме человека приходится около 50 тыс. нуклеотидов. Существуют очень короткие гены. Например, белок энкефалин, который синтезируется в нейронах головного мозга и влияет на формирование наших положительных эмоций, состоит всего из 5 аминокислот. Следовательно, ген, отвечающий за его синтез, содержит всего около двух десятков нуклеотидов. А самый длинный ген, кодирующий один из мышечных белков, состоит из 2,5 млн нуклеотидов.

В геноме человека, так же как и у других млекопитающих, участки ДНК, кодирующие белки, составляют менее 5 % от всей длины хромосом. Остальную, большую часть ДНК раньше называли избыточной, но теперь стало ясно, что она выполняет очень важные регуляторные функции, определяя, в каких клетках и когда должны функционировать те или иные гены. У более просто организованных прокариотических организмов, геном которых представлен одной кольцевой молекулой ДНК, на кодирующую часть приходится до 90 % от всего генома.

Все десятки тысяч генов не работают одновременно в каждой клетке многоклеточного организма, этого не требуется. Существующая специализация между клетками определяется избирательным функционированием определённых генов. Мышечной клетке не надо синтезировать кератин, а нервной – мышечные белки. Хотя надо отметить, что существует довольно большая группа генов, которые работают практически постоянно во всех клетках. Это гены, в которых закодирована информация о белках, необходимых для осуществления жизненно важных функций клетки, таких как редупликация, транскрипция, синтез АТФ и многие другие.

В соответствии с современными научными представлениями ген эукариотических клеток, кодирующий определённый белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но тем не менее активно участвуя в его управлении.

Кроме регуляторных зон существует структурная часть гена, которая, собственно, и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

Взаимодействие генов. Необходимо отчётливо представлять себе, что работа одного гена не может осуществляться изолированно от всех остальных. Взаимовлияние генов многообразно, и в формировании большинства признаков организма обычно принимает участие не один и не два, а десятки разных генов, каждый из которых вносит свой определённый вклад в этот процесс.

По данным проекта «Геном человека», для нормального развития клетки гладкой мышечной ткани необходима слаженная работа 127 генов, а в формировании поперечно – полосатого мышечного волокна участвуют продукты 735 генов.

В качестве примера взаимодействия генов рассмотрим, как наследуется окраска цветка у некоторых растений. В клетках венчика душистого горошка синтезируется некое вещество, так называемый пропигмент, который под действием специального фермента может превратиться в антоциановый пигмент, вызывающий пурпурную окраску цветка. Значит, наличие окраски зависит от нормального функционирования по крайней мере двух генов, один из которых отвечает за синтез пропигмента, а другой – за синтез фермента (рис. 82). Нарушение в работе любого из этих генов приведёт к нарушению синтеза пигмента и, как следствие, к отсутствию окраски; при этом венчик цветков будет белый.


Рис. 82. Схема образования пигмента у душистого горошка

Иногда встречается и противоположная ситуация, когда один ген влияет на развитие нескольких признаков и свойств организма. Такое явление называют плейотропией или множественным действием гена. Как правило, такое действие вызывают гены, функционирование которых очень важно на ранних стадиях онтогенеза. У человека подобным примером может служить ген, участвующий в формировании соединительной ткани. Нарушение в его работе приводит к развитию сразу нескольких симптомов (синдром Марфана): длинные «паучьи» пальцы, очень высокий рост из-за сильного удлинения конечностей, высокая подвижность суставов, нарушение структуры хрусталика и аневризма (выпячивание стенки) аорты.

Вопросы для повторения и задания

1. Что такое геном? Выберите самостоятельно критерии сравнения и сравните понятия «геном» и «генотип».

2. Чем определяется существующая специализация клеток?

3. Какие обязательные элементы входят в состав гена эукариотической клетки?

4. Приведите примеры взаимодействия генов.

Подумайте! Выполните!

1. Митохондрии содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования этих органоидов. Подумайте, как будут наследоваться эти внеядерные гены.

2. Вспомните известные вам особенности развития человека. На каком этапе эмбриогенеза уже возникает чёткая дифференциация клеток?

3. Создайте портфолио по теме «Исследования ДНК человека: надежды и опасения».

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Взаимодействие неаллельных генов. Известно несколько видов взаимодействия неаллельных генов.

Комплементарное взаимодействие. Явление взаимодействия нескольких неаллельных генов, приводящее к развитию нового проявления признака, отсутствующего у родителей, называют комплементарным взаимодействием. Пример наследования окраски цветка у душистого горошка, приведённый в § 28, относится как раз к этому типу взаимодействия генов. Доминантные аллели двух генов (А и В) каждый в отдельности не могут обеспечить синтез пигмента. Антоциановый пигмент, вызывающий пурпурную окраску цветка, начинает синтезироваться только в том случае, когда в генотипе присутствуют доминантные аллели обоих генов (А_В_) (рис. 83).


Рис. 83. Наследование окраски венчика у душистого горошка


Рис. 84. Наследование формы гребня у кур

Известным примером комплементарного взаимодействия является наследование формы гребня у кур (рис. 84). Существует четыре формы гребня, формирование которых определяется взаимодействием двух неаллельных генов – А и В. При наличии в генотипе доминантных аллелей только гена А (А_bb) образуется розовидный гребень, наличие доминантных аллелей второго гена В (aaB_) обусловливает образование гороховидного гребня. Если в генотипе присутствуют доминантные аллели обоих генов (А_В_), образуется ореховидный гребень, а при отсутствии доминантных аллелей (aabb) развивается простой гребень.

Эпистаз. Взаимодействие неаллельных генов, при котором ген одной аллельной пары подавляет проявление гена другой аллельной пары, называют эпистазом. Гены, которые подавляют действие других генов, называют ингибиторами или супрессорами. Гены-ингибиторы могут быть как доминантными (I), так и рецессивными (i), поэтому различают доминантный и рецессивный эпистазы.

При доминантном эпистазе один доминантный ген (I) подавляет проявление другого неаллельного доминантного гена.

Возможны два варианта расщепления по фенотипу при доминантном эпистазе.

1. Гомозиготы по рецессивным аллелям (aaii) фенотипически не отличаются от организмов, имеющих в своём генотипе доминантные аллели гена-ингибитора. У тыквы окраска плода может быть жёлтой (А) и зелёной (а) (рис. 85). Проявление этой окраски может быть подавлено доминантным геном-ингибитором (I), в результате чего сформируются белые плоды (А_I_; aaI_).


В описанном и аналогичных случаях при расщеплении в F2 по генотипу 9:3:3:1 расщепление по фенотипу соответствует 12:3:1.

2. Гомозиготы по рецессивным аллелям (aaii) не отличаются по фенотипу от организмов с генотипами A_I_ и aaI_.

У кукурузы структурный ген А определяет окраску зерна: пурпурная (А) или белая (а). При наличии доминантного аллеля гена-ингибитора (I) пигмент не синтезируется.



Рис. 85. Наследование окраски плода у тыквы

В F2 у 9/16 растений (A_I_) пигмент не синтезируется, потому что в генотипе присутствует доминантный аллель гена-ингибитора (I). У 3/16 растений (aaI_) окраска зерна белая, так как в их генотипе нет доминантного аллеля А, отвечающего за синтез пигмента, и, кроме того, присутствует доминантный аллель гена-ингибитора. У 1/16 растений (aaii) зёрна тоже белые, потому что в их генотипе нет доминантного аллеля А, отвечающего за синтез пурпурного пигмента. Только у 3/16 растений, имеющих генотип A_ii, формируются окрашенные (пурпурные) зёрна, так как при наличии доминантного аллеля А в их генотипе отсутствует доминантный аллель гена ингибитора.

В этом и других аналогичных примерах расщепление по фенотипу в F2 13:3. (Обратите внимание, что по генотипу расщепление всё равно остаётся прежним – 9:3:3:1, соответствующим расщеплению в дигибридном скрещивании.)

При рецессивном эпистазе рецессивный аллель гена – ингибитора в гомозиготном состоянии подавляет проявление неаллельного доминантного гена.

У льна ген В определяет пигментацию венчика: аллель В – голубой венчик, аллель b – розовый. Окраска развивается только при наличии в генотипе доминантного аллеля другого неаллельного гена – I. Присутствие в генотипе двух рецессивных аллелей ii приводит к формированию неокрашенного (белого) венчика.


При рецессивном эпистазе в этом и других аналогичных случаях в F2 наблюдается расщепление по фенотипу 9:3:4.

Полимерное действие генов (полимерия). Ещё одним вариантом взаимодействия неаллельных генов является полимерия. При таком взаимодействии степень выраженности признака зависит от числа доминантных аллелей этих генов в генотипе: чем больше в сумме доминантных аллелей, тем сильнее выражен признак. Примером такого полимерного взаимодействия является наследование окраски зёрен у пшеницы (рис. 86). Растения с генотипом А1А1А2А2 имеют тёмно-красные зёрна, растения a1a1a2a2 – белые зёрна, а растения с одним, двумя или тремя доминантными аллелями – разную степень окраски: от розовой до красной. Такую полимерию называют накопительной или кумулятивной.

Однако существуют варианты и некумулятивной полимерии. Например, наследование формы стручка у пастушьей сумки определяется двумя неаллельными генами – А1 и А2. При наличии в генотипе хотя бы одного доминантного аллеля формируется треугольная форма стручка, при отсутствии доминантных аллелей (a1a1a2a2) стручок имеет овальную форму. В этом случае расщепление во втором поколении по фенотипу будет 15:1.



Рис. 86. Наследование окраски зёрен пшеницы

<<< Назад
Вперед >>>
Оглавление статьи/книги

Генерация: 2.102. Запросов К БД/Cache: 2 / 0
Вверх Вниз