Книга: Биология. Общая биология. 10 класс. Базовый уровень

18. Деление клетки. Митоз

<<< Назад
Вперед >>>

18. Деление клетки. Митоз

Вспомните!

Как, согласно клеточной теории, происходит увеличение числа клеток?

Как вы считаете, одинакова ли продолжительность жизни разных типов клеток в многоклеточном организме? Обоснуйте своё мнение.

В момент рождения ребёнок весит в среднем 3–3,5 кг и имеет рост около 50 см, детёныш бурого медведя, чьи родители достигают веса 200 кг и более, весит не более 500 г, а крошечный кенгурёнок – менее 1 г. Из серого невзрачного птенца вырастает прекрасный лебедь, юркий головастик превращается в степенную жабу, а из посаженного возле дома жёлудя вырастает громадный дуб, который спустя сотню лет радует своей красотой новые поколения людей. Все эти изменения возможны благодаря способности организмов к росту и развитию. Дерево не превратится в семя, рыба не вернётся в икринку – процессы роста и развития необратимы. Эти два свойства живой материи неразрывно связаны друг с другом, и в их основе лежит способность клетки к делению и специализации.

Рост инфузории или амёбы – это увеличение размеров и усложнение строения отдельной клетки за счёт процессов биосинтеза. Но рост многоклеточного организма – это не только увеличение размеров клеток, но и их активное деление – увеличение количества. Скорость роста, особенности развития, размеры, до которых может дорасти определённая особь, – всё это зависит от многих факторов, в том числе и от влияния среды. Но основным, определяющим фактором всех этих процессов служит наследственная информация, которая хранится в виде хромосом в ядре каждой клетки. Все клетки многоклеточного организма происходят из одной оплодотворённой яйцеклетки. В процессе роста каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы, обладая общей наследственной программой организма, специализироваться и, выполняя свою определённую функцию, являться неотъемлемой частью целого.

В связи с дифференцировкой, т. е. разделением на разные типы, клетки многоклеточного организма имеют неодинаковую продолжительность жизни. Например, нервные клетки перестают делиться ещё во время внутриутробного развития, и в течение жизни организма их количество может только уменьшаться. Однажды возникнув, больше не делятся и живут столько, сколько ткань или орган, в состав которых они входят, клетки, образующие поперечно-полосатые мышечные ткани у животных и запасающие ткани у растений. Постоянно делятся клетки красного костного мозга, образуя клетки крови, продолжительность жизни которых ограничена. В процессе выполнения своих функций быстро гибнут клетки кожного эпителия, поэтому в ростковой зоне эпидермиса клетки делятся очень интенсивно. Активно делятся камбиальные клетки и клетки конусов нарастания у растений. Чем выше специализация клеток, тем ниже их способность к размножению.

В организме человека около 1014 клеток. Ежедневно погибает около 70 млрд клеток кишечного эпителия и 2 млрд эритроцитов. Самые короткоживущие – это клетки кишечного эпителия, чья продолжительность жизни составляет всего 1–2 дня.

Жизненный цикл клетки.

Период жизни клетки от момента её возникновения в процессе деления до гибели или конца последующего деления называют жизненным циклом. Клетка возникает в процессе деления материнской клетки и исчезает в ходе собственного деления или гибели. Продолжительность жизненного цикла у разных клеток очень сильно различается и зависит от типа клеток и условий внешней среды (температуры, наличия кислорода и питательных веществ). Например, жизненный цикл амёбы равен 36 часам, а бактерии могут делиться каждые 20 минут.

Жизненный цикл любой клетки представляет собой совокупность событий, протекающих в клетке с момента её возникновения в результате деления и до гибели или последующего митоза. Жизненный цикл может включать митотический цикл, состоящий из подготовки к митозу – интерфазы и самого деления, а также стадию специализации – дифференцировки, во время которой клетка выполняет свои специфические функции. Продолжительность интерфазы всегда больше, чем само деление. У клеток кишечного эпителия грызунов интерфаза длится в среднем 15 часов, а деление осуществляется за 0,5–1 час. Во время интерфазы в клетке активно идут процессы биосинтеза, клетка растёт, образует органоиды и готовится к следующему делению. Но, несомненно, самым важным процессом, происходящим во время интерфазы в ходе подготовки к делению, является удвоение ДНК (§ 9).

Две спирали молекулы ДНК расходятся и на каждой из них синтезируется новая полинуклеотидная цепь. Редупликация ДНК происходит с высочайшей точностью, что обеспечивается принципом комплементарности. Новые молекулы ДНК являются абсолютно идентичными копиями исходной, и после завершения процесса удвоения они остаются соединёнными в области центромеры. Молекулы ДНК, входящие в состав хромосомы после редупликации, называют хроматидами.

В точности процесса редупликации заключается глубокий биологический смысл: нарушение копирования привело бы к искажению наследственной информации и, как следствие, к нарушению функционирования дочерних клеток и всего организма в целом.

Если бы удвоения ДНК не происходило, то при каждом делении клетки число хромосом уменьшалось бы вдвое и довольно скоро в каждой клетке совсем не осталось бы хромосом. Однако нам известно, что во всех клетках тела многоклеточного организма число хромосом одинаково и из поколения в поколение не изменяется. Это постоянство достигается благодаря митотическому делению клеток.

Митоз. Деление, в процессе которого происходит строго одинаковое распределение точно скопированных хромосом между дочерними клетками, что обеспечивает образование генетически идентичных – одинаковых – клеток, называется митоз.


Рис. 57. Фазы митоза

Весь процесс митотического деления условно разделяют на четыре фазы разной продолжительности: профаза, метафаза, анафаза и телофаза (рис. 57).

В профазе хромосомы начинают активно спирализоваться – скручиваться и приобретают компактную форму. В результате такой упаковки считывание информации с ДНК становится невозможным и синтез РНК прекращается. Спирализация хромосом является обязательным условием успешного разделения генетического материала между дочерними клетками. Представьте себе некое небольшое помещение, весь объём которого заполнен 46 нитями, общая длина которых в сотни тысяч раз превышает размер этого помещения. Это ядро человеческой клетки. В процессе редупликации каждая хромосома удваивается, и мы имеем в том же объёме уже 92 перепутанные нити. Разделить их поровну, не запутавшись и не порвав, практически невозможно. Но смотайте эти нити в клубки, и вы легко их сможете распределить на две равные группы – по 46 клубков в каждой. Нечто аналогичное и происходит во время митотического деления.

К концу профазы ядерная оболочка распадается, и между полюсами клетки протягиваются нити веретена деления – аппарата, который обеспечивает равномерное распределение хромосом.

В метафазе спирализация хромосом становится максимальной, и компактные хромосомы располагаются в экваториальной плоскости клетки. На этой стадии отчётливо видно, что каждая хромосома состоит из двух сестринских хроматид, соединённых в области центромеры. Нити веретена деления прикрепляются к центромере.

Анафаза протекает очень быстро. Центромеры расщепляются надвое, и с этого момента сестринские хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикреплённые к центромерам, оттягивают хромосомы к полюсам клетки.

На стадии телофазы дочерние хромосомы, собравшиеся у полюсов клетки, раскручиваются и вытягиваются. Они вновь превращаются в хроматин и становятся плохо различимыми в световой микроскоп. Вокруг хромосом на обоих полюсах клетки формируются новые ядерные оболочки. Образуются два ядра, содержащие одинаковые диплоидные наборы хромосом.


Рис. 58. Деление цитоплазмы в животной (А) и растительной (Б) клетках

Завершается митоз делением цитоплазмы. Одновременно с расхождением хромосом органоиды клетки приблизительно равномерно распределяются по двум полюсам. В животных клетках клеточная мембрана начинает впячиваться внутрь, и клетка делится путём перетяжки (рис. 58). В клетках растений мембрана формируется внутри клетки в экваториальной плоскости и, распространяясь к периферии, разделяет клетку на две равные части.

Значение митоза. В результате митоза возникают две дочерние клетки, содержащие столько же хромосом, сколько их было в ядре материнской клетки, т. е. образуются клетки, идентичные родительской. В нормальных условиях никаких изменений генетической информации в процессе митоза не происходит, поэтому митотическое деление поддерживает генетическую стабильность клеток. Митоз лежит в основе роста, развития и вегетативного размножения многоклеточных организмов. Благодаря митозу осуществляются процессы регенерации и замены отмирающих клеток (рис. 59). У одноклеточных эукариот митоз обеспечивает бесполое размножение.


Рис. 59. Значение митоза: А – рост (кончик корня); Б – вегетативное размножение (почкование дрожжей); В – регенерация (хвост ящерицы)

Вопросы для повторения и задания

1. Что такое жизненный цикл клетки?

2. Каким образом в митотическом цикле происходит удвоение ДНК? Объясните, в чём заключается биологический смысл этого процесса.

3. В чём состоит подготовка клетки к митозу?

4. Опишите последовательно фазы митоза.

5. Составьте схему, иллюстрирующую биологическое значение митоза.

Подумайте! Выполните!

1. Объясните, почему завершение митоза – деление цитоплазмы происходит по – разному в животных и растительных клетках.

2. Клетки каких растительных тканей активно делятся и дают начало всем остальным тканям растения?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Интерфаза. Стадия подготовки клетки к делению называется интерфаза Она подразделяется на несколько периодов.

Пресинтетический период (G1) – это наиболее продолжительный период клеточного цикла, наступающий после деления (митоза) клеток. Число хромосом и содержание ДНК – 2n2с. У разных видов клеток период G1 может продолжаться от нескольких часов до нескольких суток. В этот период в клетке активно синтезируются белки, нуклеотиды и все виды РНК, делятся митохондрии и пропластиды (у растений), образуются рибосомы и все одномембранные органоиды, увеличивается объём клетки, накапливается энергия, идёт подготовка к редупликации ДНК.

Синтетический период (S) – это важнейший период в жизни клетки, во время которого происходит удвоение ДНК (редупликация). Длительность S – периода – от 6 до 10 часов. В это же время идёт активный синтез белков-гистонов, входящих в состав хромосом, и их миграция в ядро. К концу периода каждая хромосома состоит из двух сестринских хроматид, соединённых друг с другом в области центромеры. Тем самым число хромосом не меняется (2n), а количество ДНК удваивается (4с).

Постсинтетический период (G2) наступает после завершения удвоения хромосом. Это период подготовки клетки к делению. Он длится 2–6 часов. В это время активно накапливается энергия для предстоящего деления, синтезируются белки микротрубочек (тубулины) и регуляторные белки, запускающие митоз.

Формы митоза. В природе встречается несколько вариантов митотического деления клеток.

Симметричный митоз. Наиболее распространённая в природе форма митоза, в результате которой получаются две одинаковые клетки.

Асимметричный митоз. Митоз, при котором происходит неравномерное распределение цитоплазмы между дочерними клетками или неравномерное распределение специальных белков – факторов дифференцировки, определяющих дальнейшую судьбу клетки после деления.

Закрытый митоз. У некоторых инфузорий, водорослей, грибов митоз проходит без разрушения ядерной оболочки. В этом случае веретено деления может располагаться внутри специального канала, который образуется в ядре. Молекулярные механизмы закрытого митоза пока изучены ещё недостаточно хорошо.

Амитоз. Амитоз, или прямое деление, – деление клетки без образования веретена деления. Интерфазное ядро разделяется перетяжкой на две части. При этом не происходит равномерное распределение генетического материала между двумя дочерними клетками. Чаще всего амитоз встречается в клетках высокоспециализированных тканей, которым уже не надо делиться дальше, при старении, дегенерации тканей и в клетках злокачественных опухолей.

Следует отметить, что в настоящее время большинство учёных считают, что все явления, относимые к амитозу, – это описания неких патологических процессов или результат неверной интерпретации недостаточно качественно приготовленных микропрепаратов. Однако всё-таки некоторые варианты деления ядер эукариотических клеток нельзя отнести ни к митозу, ни к мейозу. Таково, например, деление макронуклеусов многих инфузорий, которое происходит без образования веретена деления.

Повторите и вспомните!

Растения

Образовательные ткани. Клетки специализированных растительных тканей (покровных, механических, проводящих) не способны к делению. Следовательно, в растении должны быть ткани, единственная функция которых заключается в новообразовании клеток. Только от них зависит возможность роста растения. Это образовательные ткани, или меристемы (от греч. meristos – делимый).

Образовательные ткани, или меристемы, состоят из мелких тонкостенных крупноядерных клеток, содержащих пропластиды, митохондрии и мелкие, практически неразличимые под световым микроскопом вакуоли. Меристемы обеспечивают рост растения и образование всех остальных типов тканей. Их клетки делятся путём митоза. После каждого деления одна из сестринских клеток сохраняет свойство материнской, а другая вскоре прекращает деление и приступает к начальным этапам дифференциации, в дальнейшем образуя клетки определённой ткани.

Образовательные ткани в теле растения располагаются в разных местах, в связи с чем их делят на несколько групп.

Верхушечные (апикальные) меристемы. Располагаются на верхушках осевых органов – стебля и корня, обеспечивая рост этих органов в длину. По мере ветвления на каждом новом боковом побеге или корне образуются свои верхушечные меристемы.

Боковые (латеральные) меристемы. Обеспечивают утолщение осевых органов. Это камбий, характерный для голосеменных и двудольных растений, и феллоген, образующий покровную ткань – пробку, или феллему.

Вставочные (интеркалярные) меристемы. Расположены в нижней части междоузлия стебля злаков и у основания молодых листьев, обеспечивая рост этих органов. По мере окончания роста листа или стеблевого участка вставочная меристема превращается в постоянные ткани.

<<< Назад
Вперед >>>
Оглавление статьи/книги

Генерация: 1.266. Запросов К БД/Cache: 2 / 0
Вверх Вниз