Книга: Как работает Вселенная: Введение в современную космологию

А.3. Плоская ?CDM-модель

<<< Назад
Вперед >>>

А.3. Плоская ?CDM-модель


Астрономические наблюдения дают информацию о том, что наша Вселенная является практически плоской и


Главное свидетельство малой кривизны пространства – это расположение основного максимума в спектре на рис. 3.2, который называется акустическим пиком. При положительной или отрицательной кривизне Вселенной он сдвигается влево или вправо. Плоскостность объясняется теорией инфляции. В эпоху инфляции любые отклонения от плоскостности быстро уменьшались, поэтому в настоящее время выполняется условие (A.13). В результате космологи используют две версии ?CDM-модели. В первой из них мы используем плоскую модель с


Это условие выполняется постоянно. Другими словами, сумма плотностей материи и материи, имитирующей космологическую постоянную, всегда равна критической плотности. Этот случай соответствует А = 0 в уравнениях (A.10), (A.11).

Вторая версия допускает некоторое незначительное отклонение от плоскостности Вселенной, которое возрастало с течением времени во время расширения с замедлением. В этом случае сумма плотностей материи и космологической постоянной почти равна критической. Естественно, это справедливо лишь с конца космологической инфляции. Инфляция обеспечила прекрасную тонкую настройку параметров плотности, удовлетворяющих условию (A.13) даже через миллиарды лет после ее окончания. Ограничение (A.13) выполняется в настоящее время и будет справедливо всегда из-за ускоренного расширения.

В плоской Вселенной параметр А в уравнениях (A.10) и (A.12) равен нулю. В почти плоской Вселенной все члены с этим параметром дают очень малые вклады в правые части соответствующих уравнений и могут быть отброшены, в результате чего мы получаем плоскую ?CDM-модель. Она прекрасно описывает эволюцию Вселенной после завершения инфляционного периода.

Нам нужны значения только двух космологических параметров, полученных из наблюдений, а именно – текущее значение параметра плотности ?m (значение ?? мы находим из условия (А.14)) и параметр Хаббла H0. С их помощью из уравнения (А.10) мы получаем закон изменения со временем постоянной Хаббла


Здесь a0 – это текущий масштабный фактор (часто принимаемый равным единице), а a – зависящий от времени масштабный фактор. Закон (А.15) описывает как прошлое, так и будущее Вселенной. Для эволюции в прошлом мы можем использовать красное смещение z = a0/a – 1. Уравнение (А.15), как и ожидалось, дает текущее значение постоянной Хаббла, равное H0. Значение постоянной Хаббла непрерывно уменьшается:


На рис. А.1 показана эволюция отношения постоянной Хаббла к параметру Хаббла в зависимости от относительного масштабного фактора.


Как насчет ускоренного расширения? Напомним, что ускорение расширения не означает, что постоянная Хаббла увеличивается. Например, в модели де Ситтера она постоянна, а q < 0. Параметр торможения q определяется по формуле (2.23). Мы можем получить формулу


В современную эпоху z = 0 она превращается в уравнение (А.9). На рис. А.2 построен график этой функции для полученных астрономами значений ?m0 = 0,31, ??0 = 0,69. Мы видим, что после окончания инфляции параметр замедления был равен 0,5 и уменьшался. Он исчез при a/a0 = (?m0/2??0)1/3 ? 0,608, когда масштабный фактор составлял около 61 % от текущего. Это соответствует красному смещению z ? 0,645. Самая дальняя из известных сверхновых старше, чем переход от замедления к ускорению, так что она взорвалась еще во Вселенной, расширяющейся с замедлением. В будущем Вселенная продолжит ускоренно расширяться и ее параметр замедления будет уменьшаться, стремясь к –1.


Рассмотрим эволюцию параметра плотности вещества ?m и параметра плотности темной энергии ?? с учетом формул (А.5) – (А.7):


Используя текущие значения параметров плотности, мы строим на рис. А.3 их значения в прошлом и в будущем в зависимости от относительного масштабного фактора. Параметрам плотности материи и космологической постоянной соответствуют длины линейных отрезков выше и ниже кривой. В левой части участка, который соответствует прошлому, мы могли бы перейти к красному смещению по формуле a0/a = 1 + z. В будущем мы могли бы формально использовать эту формулу и получить отрицательные значения z, но это не принято. В нерелятивистском случае мы можем использовать радиус сферы r вместо масштабного коэффициента, так что a0/a = r0/r. Момент нулевого ускорения соответствует ?m = 2/3, ?? = 1/3 по формулам (А.9) и (А.17).


Итак, мы нашли зависимости всех необходимых параметров от масштабного фактора, используя только значение параметра плотности вещества ?m. Масштабный фактор часто используется в космологии. Но нам интересно еще и то, когда все это происходило. Мы можем проинтегрировать уравнение (А.11) и получить


Момент t = 0 соответствует Большому взрыву (строго говоря, концу эпохи инфляции менее чем секунду позже). Возьмем H0 = 68 (км/с)/Мпк. Характерный масштаб времени равен обратному параметру Хаббла H0–1 ? 4,54?1017 с ? 14,4?109 лет. Мы построили график этой зависимости на рис. 2.9 (слева). Мы также использовали эту зависимость, чтобы преобразовать рис. А.1–А.3 в рис. 2.9 (справа), 2.10 и 2.11.

Из (А.15) получаем закон расширения Вселенной:


Рассчитаем возраст Вселенной T. Это интервал времени от Большого взрыва до «сейчас», которое соответствует a = a0. Таким образом, возраст Вселенной равен


Для сравнения найдем этот возраст в случае, если темная энергия отсутствовала бы. Полагая в формуле (А.20) ?m= 1 и ??= 0, получаем T = 2/3H0 ? 9,6 млрд лет в полном соответствии с формулой (2.19). Это меньше возраста самых старых звезд.

<<< Назад
Вперед >>>

Генерация: 7.756. Запросов К БД/Cache: 3 / 1
Вверх Вниз