Книга: Энергия, секс, самоубийство

Митохондриальный отбор

<<< Назад
Вперед >>>

Митохондриальный отбор

В 2004 г. выдающийся митохондриальный генетик Дуглас Уоллес и его группа (Калифорнийский университет в Ирвайне) опубликовали крайне интересные данные, свидетельствующие о том, что естественный отбор действует на митохондриальные гены. Сам Уоллес, два десятилетия работавший в Университете Эмори (Атланта), был одним из первых исследователей, занимавшихся типизацией митохондрий в человеческой популяции. Его работы начала 1980-х гг. легли в основу знаменитой статьи Канн, Стоункинга и Уилсона (1987), о которой мы говорили в начале этой главы. На генетическом древе человечества, построенном Уоллесом, видны несколько митохондриальных линий — гаплогрупп (впоследствии за ними закрепилось название «дочери Евы»), Уоллес обозначил эти группы буквами алфавита (классификация Эмори), а Брайан Сайкс (Оксфорд), автор научно-популярного бестселлера The Seven Daughters of Eve («Семь дочерей Евы»), подобрал им подходящие личные имена (в его книге речь идет только о европейских линиях).

Уоллес (который по совершенно непонятной мне причине даже не упоминается в книге Сайкса) — выдающийся специалист не только в области митохондриальной популяционной генетики, но и в области митохондриальных заболеваний. Количество таких заболеваний совершенно не соответствует малому числу митохондриальных генов. Их причиной часто являются незначительные вариации последовательности митохондриальной ДНК. Учитывая его интерес к митохондриальным заболеваниям, неудивительно, что Уоллеса одолевали подозрения, что на митохондриальные гены может действовать естественный отбор. Действительно, если мутации митохондриальной ДНК могут стать причиной серьезной болезни, то естественный отбор просто обязан выбраковывать их.

Еще в начале 1990-х гг. Уоллес и его коллеги обратили внимание на статистические данные, свидетельствующие об «очищающем отборе». Уоллес не забывал о них следующие десять лет. Читая статьи на тему генетических исследований митохондрий, он то и дело замечал, что географическое распространение митохондриальных генов в человеческой популяции не случайно, как это предсказывает теория нейтрального дрейфа. Конкретные гены процветают в определенных местах, а это нередко красноречиво свидетельствует о действии отбора. Например, большинство многочисленных африканских линий митохондриальной ДНК встречается только в Африке. Лишь несколько линий покинули пределы черного континента, и из них расцвело все разнообразие митохондриальной ДНК за пределами Африки.

Из всего разнообразия азиатской митохондриальной ДНК лишь несколько типов смогли прижиться в Сибири, а затем переселиться в обе Америки. Может быть, подумал Уоллес, некоторые митохондриальные гены позволяют лучше адаптироваться к определенным типам климата и поэтому хорошо переносят миграцию, в то время как другие должны оставаться дома под страхом вымирания?

К 2002 г. Уоллес и его коллеги занялись этим вопросом вплотную и обнародовали свою точку зрения в ряде вдумчивых обзорных статей. Однако только в 2004 г. им наконец удалось найти доказательства. Их гипотеза захватывающе проста и в то же время исключительно важна как для эволюционной теории, так и для медицины. Митохондрии имеют две основные функции — производство энергии и производство тепла. Баланс между производством энергии и теплопродукцией может варьировать, а его текущее состояние может быть принципиально важно для здоровья. И вот почему.

Существенная часть нашего внутреннего тепла производится за счет рассеивания протонного градиента через митохондриальные мембраны. Поскольку протонный градиент может идти или на производство АТФ, или на теплопродукцию, протоны, рассеивающиеся с выделением тепла, не могут идти на производство АТФ. (Как мы видели в части 2, протонный градиент выполняет ряд других очень важных функций, но если допустить, что они остаются постоянными, на обсуждаемый аспект это не влияет.) Скажем, если 30 % протонного градиента используется для производства тепла, то для производства АТФ может быть направлено не более 70 %. Уоллес и коллеги поняли, что это равновесие может смещаться в зависимости от климата. Жители тропической Африки выиграют от тесного сопряжения закачки протонов с производством АТФ, так как в жарком климате разумно производить меньше тепла. Напротив, эскимосам имеет смысл производить больше внутреннего тепла, а значит, относительно меньше АТФ. Чтобы уравновесить более низкий уровень производства АТФ, им нужно больше есть.

Уоллес начал искать митохондриальные гены, которые могли бы влиять на равновесие между теплопродукцией и производством АТФ. Он нашел несколько вариантов, которые, возможно, влияют на теплопродукцию (за счет разобщения потока электронов и закачки протонов). Как и следовало ожидать, варианты, производящие больше тепла, чаще встречались в Арктике, а производящие меньше всего тепла — в Африке.

На первый взгляд это просто вполне разумное соображение, однако если приглядеться внимательно, то за ним скрывается поворот сюжета, достойный самого закрученного детектива. Вспомним часть 4 книги: скорость образования свободных радикалов зависит не от скорости дыхания, а от того, насколько дыхательные цепи заполнены электронами. Если электроны текут вяло, потому что спрос на энергию низок, они накапливаются в цепях и утекают с образованием свободных радикалов. Мы говорили о том, что скорость образования свободных радикалов можно снизить, поддерживая поток электронов за счет рассеивания протонного градиента с выделением тепла. Я тогда сравнил эту ситуацию с плотиной, снабженной водосбросами. Необходимость рассеивать протонный градиент могла быть настолько животрепещущей, что расходы окупались. Спускать воду через водосбросы — это расточительство, но уж лучше расточительство, чем потоп. Так возникла эндотермность. Короче говоря, повышение внутренней теплопродукции снижает скорость образования свободных радикалов в состоянии покоя, а ее снижение, наоборот, ведет к повышению вероятности образования свободных радикалов.

Теперь посмотрим, что происходит у африканцев и, например, эскимосов. Африканцы производят меньше внутреннего тепла, чем эскимосы, и поэтому уровень образования свободных радикалов у них должен быть выше, особенно если они переедают. Согласно Уоллесу, африканцы не умеют «сжигать» избыток пищи в виде тепла с той же эффективностью, что эскимосы, и избыток пищи приводит к более активному образованию свободных радикалов. Значит, у них должны чаще встречаться проблемы, связанные со свободными радикалами, например заболевания сердечно-сосудистой системы и диабет. Это действительно так. Известно, что африканцы, живущие в США и питающиеся на американский манер, очень подвержены диабету. Напротив, эскимосы, которые умеют «сжигать» избытки пищи с выделением тепла, должны меньше страдать от подобных заболеваний. Это тоже так. Конечно, на подверженность определенным заболеваниям влияют и другие факторы (например, употребление в пищу жирной рыбы), так что эти выводы следует считать предварительными. Однако, если в этих соображениях есть доля правды, из них должен следовать еще один вывод: у народов, адаптированных к арктическому климату, должно чаще встречаться мужское бесплодие, и косвенные свидетельства этому есть.

Логика рассуждения в данном случае такая же. Жители Арктики направляют меньше пищи на производство энергии и больше на производство тепла. В большинстве случаев это неважно (нужно просто больше есть), но в одном случае очень существенно. Речь идет о подвижности сперматозоидов. Сперматозоиды, плывущие к яйцеклетке, получают энергию от митохондрий, а митохондрий в каждом сперматозоиде меньше сотни. Поэтому сперматозоиды полностью зависят от эффективности тех немногих митохондрий, которые у них остались, и если те не смогут производить энергию, сперматозоиды не смогут двигаться. Если эти митохондрии растрачивают энергию на производство тепла, сперматозоиды, скорее всего, не смогут функционировать нормально. Это состояние называется астенозооспермией. Это означает, что мужское бесплодие иногда зависит не от генов мужчины, а от митохондриальных генов. Другими словами, мужское бесплодие должно передаваться по материнской линии (по крайней мере, отчасти), и изменчивость этого признака определяется принадлежностью к митохондриальный гаплогруппе. Одно недавнее исследование подтвердило, что у европейцев это действительно так: астенозооспермия чаще встречается у людей с гаплогруппой T (которая широко распространена на севере Швеции), чем у людей с гаплогруппой J (более распространенный вариант на юге Европе). Не знаю, относится ли это к эскимосам: к сожалению, мне не удалось найти данные о частоте астенозооспермии у этого народа.

В целом эти запутанные взаимоотношения показывают, что на митохондриальные гены действует естественный отбор[67]. Сила его действия зависит от таких факторов, как энергетическая эффективность, внутренняя теплопродукция и утечка свободных радикалов. Все они влияют на здоровье и плодовитость, а также на способность адаптироваться к разным климатическим условиям и другим факторам окружающей среды.

Таким образом, в сочетании с другими данными, которые мы обсуждали в этой главе, ортодоксальная точка зрения теряет былую убедительность. Митохондриальные гены могут наследоваться от обоих родителей (хотя это происходит очень редко). Рекомбинация возможна (хотя тоже случается редко). Митохондриальные гены накапливают мутации с разной скоростью в зависимости от обстоятельств (что ставит под вопрос точность некоторых датировок). Наконец, они, несомненно, подвержены действию естественного отбора. Эти неожиданные открытия спутали ученым все карты. Может быть, они, по крайней мере, помогают нам лучше понять законы митохондриального наследования? Если конкретнее, может быть, они объясняют, почему существуют два пола?

<<< Назад
Вперед >>>

Генерация: 3.572. Запросов К БД/Cache: 3 / 0
Вверх Вниз