Книга: Достучаться до небес: Научный взгляд на устройство Вселенной
ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ
<<< Назад ТЕХНИЦВЕТ |
Вперед >>> ИЕРАРХИЯ И БОЛЬШИЕ ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ |
ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ
Ни суперсимметрия, ни техницвет не дают нам идеального решения проблемы иерархии. Суперсимметричные теории не предлагают нам экспериментально непротиворечивых механизмов нарушения суперсимметрии, а создать на основе техницветной силы теорию, которая предсказывала бы правильные массы для кварков и лептонов, еще сложнее. Поэтому физики решили отойти от шаблонов и рассмотреть идеи, на первый взгляд еще более неоднозначные. Не забывайте, что даже если теория кажется поначалу нелепой, это ничего не значит. Только после того как полностью разберемся в ее следствиях, мы сможем решить, какая из идей самая красивая и, что гораздо важнее, правильная.
Лучшее понимание теории струн и ее компонентов, которого физики добились в 1990–е гг., позволило создать новые подходы к решению проблемы иерархии. На новые идеи физиков вдохновили элементы теории струн, хотя и не обязательно непосредственно следующие из ее очень ограниченной структуры, и речь в них идет о дополнительных пространственных измерениях. Если дополнительные измерения существуют — а у нас есть основания предполагать, что они могут существовать, — то именно в них может скрываться ключ к решению проблемы иерархии. Если это действительно так, то экспериментальных доказательств тоже можно ждать от БАКа.
Дополнительные пространственные измерения — концепция довольно экзотическая. Если во Вселенной действительно есть такие измерения, то пространство вокруг нас на самом деле совсем не такое, каким мы его наблюдаем в повседневной жизни. Помимо обычных трех измерений — лево–право, верх–низ, вперед–назад (длина, ширина и высота, иначе говоря) — пространство продолжается также в иных, невидимых направлениях.
РИС. 61. Человек и крохотный муравей воспринимают натянутый канат очень по–разному. Для человека он имеет лишь одно измерение, для муравья — два
Почему мы не видим этих измерений? Причина может заключаться в том, что они слишком малы, чтобы непосредственно влиять на что?либо из того, что мы можем наблюдать; это предположил физик Оскар Клейн еще в 1926 г. Идея в том, что из?за ограниченных возможностей нашего восприятия некоторые измерения могут оказаться слишком маленькими и потому неразличимыми для нас. Так, гимнаст, идущий по канату, видит свой путь одномерным, тогда как крохотный муравей на том же канате может двигаться в двух измерениях (рис. 61).
В другом варианте измерения могут быть скрытыми потому, что пространство–время изогнуто или скручено — как и должно происходить по Эйнштейну в присутствии энергии. Если искривление достаточно сильное, то эффекты дополнительных измерений незаметны, как определили в 1999 г. мы с Раманом Сандра- мом. Это означает, что геометрия свернутого пространства также позволяет измерениям «прятаться».
Но почему у ученых вообще возникла мысль о каких бы то ни было дополнительных измерениях, если никто никогда ничего подобного не видел? В истории физики такое происходило не раз. Никто до поры до времени не «видел» атомы и никто не «видел» кварки. Тем не менее сегодня у нас полно экспериментальных доказательств существования и того и другого.
Никакие законы физики не утверждают, что пространственных измерений может быть только три. Общая теория относительности Эйнштейна работает при любом числе измерений. Более того, вскоре после того как Эйнштейн завершил свою теорию гравитации, Теодор Калуца расширил его идеи и предположил существование четвертого пространственного измерения, а еще через пять лет Оскар Клейн предложил вариант того, как это измерение может быть свернуто и чем оно должно отличаться от трех привычных.
Теория струн — ведущий кандидат на роль теории, объединяющей гравитацию и квантовую механику, — является еще одной причиной того, что физики сейчас всерьез думают о дополнительных измерениях. Теория струн не включает в себя очевидным образом ту теорию гравитации, с которой мы знакомы. Для этого ей необходимы дополнительные измерения.
Меня часто спрашивают, сколько всего измерений существует во Вселенной. Этого мы не знаем. Теория струн предполагает шесть или семь дополнительных измерений. Но создатели моделей на этом не останавливаются. Вполне возможно, что разные варианты теории струн дадут разные ответы на этот вопрос. Во всяком случае, авторов представленных в этой главе моделей интересуют только те измерения, которые в достаточной мере искривлены или настолько велики, что могут оказывать влияние на физические предсказания. Могут существовать и другие измерения, слишком маленькие даже для физики элементарных частиц, но мы не будем принимать в расчет подобные сверхмалые сущности. Вспомним, что такое эффективная теория, и забудем обо всем слишком мелком или невидимом — о том, что не оказывает на нашу систему никакого измеримого воздействия.
Кроме того, теория струн вводит новые элементы, а именно браны; их назначение — обеспечить геометрии Вселенной дополнительные возможности в том случае, если она действительно содержит дополнительные измерения. В 1990–е гг. физик–теоретик, специалист по теории струн Джо Полчински установил, что теория струн — это не просто теория одномерных объектов. Вместе с коллегами он продемонстрировал, что для этой теории также принципиально важны многомерные объекты, известные как браны.
«Брана» происходит от слова «мембрана». Подобно мембранам, которые представляют собой двумерные поверхности в трехмерном пространстве, браны в многомерном пространстве — это поверхности с меньшим числом измерений. Браны способны захватывать в ловушку частицы и силы, так что те теряют способность передвигаться по пространству полной размерности. Браны в многомерном пространстве похожи на занавеску у вас в ванной, которая представляет собой двумерную поверхность в трехмерной комнате (рис. 62). Как капли воды могут двигаться только по двумерной поверхности оконного стекла, так и частицы и силы могут оказаться заперты на «поверхности» браны с меньшим числом измерений, чем в окружающем пространстве.
Можно сказать, что существует два типа струн: открытые струны, у которых есть концы, и замкнутые струны, образующие кольца вроде аптечных резинок (рис. 63). В 1990–е гг. струнники–теоретики поняли, что концы открытых струн не могут находиться где попало — струны должны начинаться и заканчиваться на бранах. Частицы, возникающие из колебаний открытой струны, прикрепленной к бране, тоже оказываются запертыми на ней. Частицы, представляющие собой колебания этих струн, не могут никуда уйти с браны. Как капли на окне, они могут передвигаться в пределах измерений браны, но не могут ее покинуть.
РИС. 62. Брана захватывает в ловушку частицы и силы, которые могут двигаться вдоль нее, но не в состоянии ее покинуть — примерно как капли воды на занавеске в душе
РИС. 63. Открытая струна с двумя концами и замкнутая бесконечная струна
Теория струн предполагает, что существует множество типов бран, но для моделей, пытающихся разрешить проблему иерархии, больше всего интересны те, что распространяются на три измерения — те самые три физических измерения пространства, которые нам известны. Частицы и силы могут быть заперты на такой бране, при том что пространство и тяготение охватывают больше измерений (на рис. 64 схематично представлен мир браны, где человек и магнит ограничены измерениями браны, а гравитация действует как на ней, так и за ее пределами).
Дополнительные измерения теории струн в принципе могли бы оказывать физическое влияние на наблюдаемый мир, как и трехмерные браны. Возможно, важнейшая причина рассматривать дополнительные измерения заключается в том, что они могут влиять на видимые явления и, в частности, объяснять серьезнейшие загадки, такие как проблема иерархии в физике элементарных частиц. Дополнительные измерения и браны могут оказаться ключом к решению этой проблемы; возможно, они помогут понять, почему гравитация так слаба.
Это возвращает нас к главной причине обращения к многомерным моделям и дополнительным пространственным измерениям. Они могут оказывать влияние на явления, в которых мы сейчас пытаемся разобраться, и если это так, то не исключено, что доказательства их существования появятся в самом ближайшем будущем.
Напомню, что проблему иерархии можно сформулировать двумя разными способами. Можно описать суть вопроса тем, что масса хиггсовой частицы — и, соответственно, масштаб слабого взаимодействия — на много порядков меньше массы Планка. Именно этот вопрос мы рассматривали, говоря о суперсимметрии и тех- ницветной силе. Но можно задать и эквивалентный вопрос: а почему гравитация так слаба по сравнению с другими известными фундаментальными взаимодействиями? Сила тяготения определяется планковским масштабом — громадной массой, в десять тысяч триллионов раз превышающей массу слабого взаимодействия. Чем больше масса Планка, тем слабее сила тяготения. Только когда масса объектов достигает или почти достигает планковского масштаба, сила тяготения становится существенной. А до тех пор пока частицы намного легче и не подходят под масштаб, заданный массой Планка (как, собственно, и обстоит дело в нашем мире), сила тяготения остается чрезвычайно слабой.
РИС. 64. Частицы и взаимодействия Стандартной модели могут быть заперты в мире браны, существующей в многомерном пространстве. В этом случае все вокруг — мои знакомые, вещество и известные нам звезды, взаимодействия, такие как электромагнетизм, наша Галактика и Вселенная — существует в привычных трех измерениях. Гравитация, с другой стороны, распространяется на все пространство. (Фото публикуется с разрешения Марти Розенберга.)
Загадка, связанная со слабостью гравитационных сил, по существу эквивалентна проблеме иерархии — решение одной решает и другую. Но формулировка проблемы иерархии в терминах гравитации помогает думать о решениях, связанных с дополнительными измерениями. А нам пора познакомиться с парой наводящих вопросов.
<<< Назад ТЕХНИЦВЕТ |
Вперед >>> ИЕРАРХИЯ И БОЛЬШИЕ ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ |
- ИЕРАРХИЯ И БОЛЬШИЕ ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ
- Дополнительные улики
- 5. Морфология бактерий, дополнительные органеллы
- 3.7. Измерения геометрических и динамических характеристик выбросов
- 3. Дополнительные органеллы бактерий
- Проблема измерения времени.
- Измерения в гуманитарных науках.
- Единицы измерения.
- Единицы измерения Вселенной.
- 169. Когда впервые были проведены гравитационные измерения с надводного судна?
- 168. Когда начали проводить гравитационные измерения в море американские ученые?
- 319. Какие приборы применяются для измерения течений?