Книга: Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

«Несократимая сложность»

<<< Назад
Вперед >>>

«Несократимая сложность»

В последние годы микробиологи получили и другие результаты, наглядно демонстрирующие принципиальную возможность «рождения сложного из простого» на основе элементарных и, по-видимому, случайных наследственных изменений. В ряде экспериментов удалось показать, что одна-единственная случайная мутация может привести к целому комплексу изменений, в том числе к появлению новых полезных свойств и усложнению структуры бактериального сообщества.

Ключевым словом здесь является «сообщество». Новая сложность часто рождается в эволюции в результате взаимного приспособления изначально независимых объектов — организмов, клеток или генов. Существующие бок о бок живые системы «притираются» друг к другу так, что, образно говоря, выпуклости одной из них становятся зеркальным отражением впадин другой. И так незаметно, исподволь, из двух самостоятельных объектов рождается нечто принципиально новое — целостная система, одна часть которой теперь уже не может существовать без другой. Креационисты называют это явление «нередуцируемой (или несократимой) сложностью» и считают, что оно доказывает божественное сотворение всего живого. Примеры «несократимой сложности» окружают нас повсюду. Так, люди очень быстро привыкают к достижениям медицины и техники, становятся зависимыми от них. В недалеком будущем креационисты, пожалуй, смогут «обосновать» тезис о том, что человек был сотворен одновременно с мобильными телефонами и антибиотиками — ведь он без них не может существовать!

Неизбежным следствием адаптивного (приспособительного) характера эволюции является то, что «несократимая сложность» насквозь пронизывает всю земную биосферу. Организмы постоянно приспосабливаются к среде, в том числе к среде биотической, то есть к другим живым организмам. Именно поэтому подавляющее большинство живых существ, населяющих нашу планету, не может существовать автономно: для выживания им необходимы другие живые существа.

Связи между разными видами организмов сильно различаются по степени жесткости и детерминированности. Наиболее жесткие связи характерны для симбионтов и паразитов, которые не могут жить без своих сожителей или хозяев. В мире прокариот, как мы разобрали в предыдущих главах, чрезвычайно широко распространены симбиоз и связанные с ним явления, такие как альтруизм, самопожертвование и сложное коллективное поведение. Хотя генетика микроорганизмов очень активно изучается (полностью прочтены геномы многих сотен микробов), генетические механизмы становления подобных взаимосвязей остаются во многом загадочными.

Интересное исследование провели недавно ученые из Института биологии развития им. Макса Планка (Тюбинген, Германия), которым удалось наглядно продемонстрировать, что одна-единственная мутация может породить способность к сложному коллективному поведению и радикально изменить взаимоотношения между организмами в сообществе[52]. Фактически в этом эксперименте было показано, как случайная мутация создает новую «несократимую сложность» без всякого заранее намеченного плана или «разумного замысла».

Работа проводилась на почвенной бактерии Myxococcus xanthus, относящейся к группе миксобактерий. Для этих прокариотических организмов характерно сложное коллективное поведение. Например, они иногда собираются в большие скопления и устраивают коллективную «охоту» на других микробов. «Охотники» выделяют токсины, убивающие «добычу», а затем всасывают органические вещества, высвободившиеся при распаде погибших клеток.

Как и другие миксобактерии, Myxococcus при недостатке пищи образует плодовые тела, в которых часть бактерий превращается в споры. В виде спор микробы могут пережить голодные времена. Плодовое тело «собирается» из огромного множества индивидуальных бактериальных клеток. Создание такой крупной и сложной многоклеточной структуры требует слаженных действий миллионов отдельных бактерий, из которых лишь малая часть получает прямую выгоду, а все остальные жертвуют собой ради общего блага. Дело в том, что лишь очень немногие из участников коллективного действа смогут превратиться в споры и передать свои гены следующим поколениям. Все остальные выступают в роли «стройматериала», обреченного умереть, не оставив потомства.

Человек — животное социальное, и поэтому альтруизм всегда вызывает у нас чувство бурного одобрения (по крайней мере на словах). Но он, однако, имеет и оборотную сторону. Там, где много альтруистов, обязательно заводятся какие-нибудь жулики, обманщики и паразиты, которые рады поживиться за чужой счет, хотя сами ничем для других жертвовать не собираются. Среди миксококков такие обманщики тоже имеются: это генетические линии (или штаммы), не способные к образованию собственных плодовых тел, но умеющие пристраиваться к чужим плодовым телам и образовывать там свои споры.

Один из таких штаммов (исследователи назвали его OC, от obligate cheater — «обязательный обманщик») не способен образовывать споры, когда живет один, однако он успешно внедряется в чужие плодовые тела и спор продуцирует даже больше, чем «альтруистический» штамм-хозяин, построивший плодовое тело.

Ученые экспериментировали с этой системой «паразит-хозяин», выращивая смешанную культуру альтруистов и обманщиков попеременно то в «голодной», то в богатой питательными веществами среде и следя за колебаниями численности двух штаммов. Во время голодовок выжить могли только те бактерии, которым удалось превратиться в споры. В одном из опытов в штамме OC произошла мутация, в результате которой бактерии не только восстановили утраченную способность к самостоятельному (без помощи другого штамма) образованию плодовых тел и спор, но и получили дополнительное преимущество. По не вполне ясным причинам мутантные бактерии оказались защищены от нахлебников — представителей штамма OC, своих прямых предков.

Возникший в результате мутации новый штамм получил условное название PX (от phoenix — «феникс»). Этот штамм появился и быстро размножился как раз в тот момент, когда почти все бактерии в экспериментальной культуре (исходный «дикий» штамм и паразиты ОС) погибли. Деградация смешанной культуры была вызвана тем, что с каждым экспериментальным циклом доля паразитов неуклонно росла, и в конце концов альтруистов — представителей исходного дикого штамма — осталось слишком мало, чтобы обеспечить себя и других плодовыми телами.

Штамм PX, как выяснилось, побеждает в конкурентном соревновании и диких миксококков, и паразитов OC. Он не нуждается для образования плодовых тел в других штаммах и защищен от паразитизма.

Генетический анализ исследованных штаммов показал, что PX отличается от своего прямого предка OC единственной мутацией — заменой нуклеотида в некодирующей (вероятно, регуляторной) области одного из генов. Белок, кодируемый эти геном, судя по всему, влияет на активность каких-то транскрипционных факторов — белков, регулирующих активность генов. Действительно, активность целого ряда генов у PX сильно изменилась по сравнению с OC.

Паразитический штамм OC произошел от исходного дикого штамма в результате 14 мутаций, причем все они сохранились у PX. Таким образом, удивительная мутация, резко повысившая конкурентоспособность бактерий штамма PX, вовсе не была возвратом к исходному, предковому состоянию: это было настоящее эволюционное новообразование.

Данный пример еще раз подтверждает идею, которая в последнее время стала уже практически общепризнанной: небольшие изменения регуляторных генов могут приводить к крупным эволюционным преобразованиям, в том числе к появлению новых свойств и функций и к общему усложнению живой системы.

<<< Назад
Вперед >>>

Генерация: 2.238. Запросов К БД/Cache: 3 / 1
Вверх Вниз