Книга: Ледники в горах

Следы былых ледников

<<< Назад
Вперед >>>

Следы былых ледников

Ледниково-аккумулятивные образования в горах встречаются гораздо реже, чем описанные выше грандиозные троги, кары, ригели и другие проявления экзарации. Это объясняется тем, что следы ледниковой аккумуляции — морены — быстро разрушаются, сохраняясь лишь на некоторых участках долин, преимущественно ближе к концам современных ледников. Кроме того, во многих случаях морены погребены под осыпями и обвалами. Заметим, что сам термин «морена», введенный в гляциологию еще в XVIII в. О. Соссюром, имеет довольно широкую трактовку, поскольку охватывает как формы рельефа ледникового происхождения, так и отложения, существующие на самих ледниках и вне их пределов.

Первые исследователи гор обращали внимание на скопления крупных камней на днищах долин, представляющих собой то гряды в виде подков, то системы холмов, очень похожих на те, которые образуются у концов современных ледников. Отсюда возникло предположение, что подобные формы рельефа являются древними конечными моренами, маркирующими прежние положения концов ледников.

Более выровненные участки между конечными моренами с поверхности иногда тоже сложены ледниковым материалом. Как выяснилось в результате геофизических исследований, эти морены имеют огромные мощности, исчисляемые сотнями метров, и заполняют днища трогов (правда, в составе таких толщ присутствуют также водно-ледниковые и осыпные отложения). Самые верхние горизонты морен, отвечающие молодым этапам ледниковой истории, вскрываются в обнажениях по берегам рек и становятся доступными для непосредственного обследования.

Конкретное изучение морен имеет принципиальное значение, поскольку позволяет решить давний спор о геологической деятельности горных ледников.

Еще в конце прошлого века с утверждениями о пассивном характере воздействия ледников на ложе выступали Ж. Люка, А. Гейм, А. Пенк и другие исследователи, которых называли консервационистами, или протекционистами. Эти представления в нашей стране развивали К. К. Марков, Н. П. Костенко и др. Они считали, что основная масса обломочного материала, слагающего морены, образовалась из продуктов выветривания бортов трогов и каров, а роль ледника в процессе формирования морен сводится к пассивному перемещению этих обломков вниз по долинам.

Надо сказать, что в основе подобных взглядов лежали реальные наблюдения. Любой исследователь, подходя к горному леднику, поражается обилию камней на его поверхности. Отдельные ледники могут быть настолько сильно замусорены камнями, что льда почти не видно. Масса остроугольных обломков постоянно ссыпается к подножию ледника, что создает впечатление, будто морены накапливаются именно таким способом.

Однако взгляды консервационистов никогда не разделились гляциологами, изучавшими физику ледников. В трудах Тиндаля, Гесса, Финстервальдера, Люцерны, Хоббса неизменно приводились веские аргументы в пользу активного воздействия ледников на подстилающие породы. А. Гесс даже высказывал предположение, что каждой стадии последнего оледенения соответствует самостоятельная система эрозионных и аккумулятивных форм.

В самой дискуссии о геологической деятельности ледников упускалось одно важное обстоятельство. Морены рассматривались с геоморфологических позиций без должного учета их состава и строения. Между тем богатый арсенал аналитических методов, используемый в современной литологии, вполне пригоден и для изучения каменного материала ледников. При этом особенно важно провести сравнительный литологический анализ обломочного материала, перемещаемого на поверхности и у ложа ледников, с материалом отложенных морен.

В составе и строении морен, несомненно, зашифрована информация о многих важных ледниковых процессах, и задача сводится к тому, чтобы получить ее. Часть анализов можно выполнить непосредственно на ледниках, для других требуется лабораторная база. Обычно стараются использовать комплекс методов, что обеспечивает взаимоконтроль итоговой информации и повышает достоверность интерпретации.

При изучении морен особый интерес вызывают содержащиеся в них глыбы и валуны. В горных районах морены буквально набиты крупнообломочным материалом. Он слагает не только моренные холмы и гряды, но и усеивает волнистые моренные равнины. По петрографическому составу эти крупные камни резко отличаются от местных коренных пород и потому названы «эрратическими» (от латинского слова errata — ошибка). Происхождение таких камней, достигающих порой огромных размеров и удаленных на десятки километров от мест коренного залегания, долгое время было предметом ожесточенных научных споров, пока не выяснилось, что ледники обладают недюжинной транспортирующей способностью.

Колоссальные размеры эрратических валунов подчас поражают воображение. В Швейцарии между селениями Эрленбах и Ветцвейль находится огромная глыба объемом свыше 2000 м3, именуемая Плуг-камень. На склоне холма над Невшательским озером выделяется гигантский обломок гнейсовой скалы объемом свыше 1000 м3, известный под названием «Стопа-камень». Он тоже был принесен ледником. Однако подлинным великаном среди эрратических камней является глыба известняка объемом свыше 5000 м3, расположенная на холме у селения Бекс в долине Роны.

Проработав ряд лет на Центральном Кавказе, мы также видели гигантские эрратические валуны. Среди них прежде всего выделяется Ермоловский камень, лежащий в русле Терека при его выходе из Дарьяльского ущелья. Длина камня превышает 28 м, а высота около 17 м, т. е. по своим размерам он вполне может конкурировать с вышеупомянутыми альпийскими гигантами.

Валуны сильно затрудняют сельскохозяйственное освоение горных стран. Чтобы расчистить землю под поля и луга, жители гор веками собирали рассеянные по поверхности камни и складывали их в огромные кучи. Однако самые крупные глыбы, конечно, невозможно передвинуть даже с помощью современной техники. Поэтому нередко забитые ими участки использовались для застройки. Например, одно из поселений в верховьях Хевсурской Арагви целиком построено на каменистой морене. Там мы побывали в доме, стена которого представляла собой отполированную ледником грань гигантского валуна.

Нередко эрратические глыбы использовались под фундаменты для башен, замков и культовых зданий, а из небольших валунов возводились стены. На Кавказе с такими сооружениями можно познакомиться в Сванетии, Осетии, Балкарии и других районах.

Гигантские камни, оставленные ледниками прошлого, представляют собой уникальные памятники природы, гармонично вписывающиеся в ландшафт гор. В настоящее время ученые обсуждают вопрос об учете и охране этих достопримечательностей и в ряде стран уже составляются специальные каталоги крупных эрратических валунов. Например, по инициативе грузинских географов такая работа ведется на Кавказе.

Изучение вещественного состава крупных обломков из морен позволяет точно установить места их отрыва, выяснить способы поступления в ледники и проследить пути переноса камней. Без этих данных невозможно реконструировать динамику и особенности геологической деятельности ледников прошлого.

Необходимо отметить, что по распространению эрратических валунов были первоначально выделены контуры древних оледенений. Швейцарский геолог Э. Фавр, работавший на Кавказе в 70-х годах прошлого века, обнаружил скопления обломков пород осевой зоны Главного хребта в долинах Сванетии и на этом основании сделал принципиально важное заключение о значительном распространении древних ледников.

Понятно, что изучение одного камня не может быть основой для серьезных выводов. Обычно в каждой точке наблюдений определяется состав 100, 200 и даже 300 камней с последующей статистической обработкой результатов. Полученные данные необходимо сопоставить с материалами геологического картирования. Однако часто эти материалы, имеющие стратиграфическую направленность, не вполне удовлетворяют гляциологов, заинтересованных в выделении петрографических зон. В таких случаях приходится дополнительно обследовать труднодоступные участки скального обрамления ледников.

В моренах, кроме крупных камней, встречается также немало мелких частиц. Для их изучения привлекаются минералогические методы. Анализам в основном подвергаются песчаные и алевритовые фракции, но интересную информацию можно извлечь и при изучении топкодисперсной составляющей — глинистых минералов. Анализ лесков и алевритов проводится под бинокулярным микроскопом, тогда как для исследования глинистых минералов необходимы рентгеновские установки. Обычно результаты минералогических анализов существенно дополняют данные по крупным камням, но при их интерпретации требуется глубокое знание питающих минералогических провинций.

Уже в первоначальных описаниях морен фиксируется их цвет: серая, бурая, желтая и т. п. Однако точно определять цвет морен научились относительно недавно с помощью специальных приборов — фотометров. В экспедиционных условиях для этого можно использовать специальные альбомы. Из морены отсеиваются частицы размером менее 0,1 мм, и их цвет сравнивается со шкалой альбома. Надо заметить, что изучение цвета не только дополняет данные вещественного состава, но и проливает свет на обстановки отложения каменного материала.

Изучение вещественного состава и цвета морен является фундаментом литологического анализа, но эти методы имеют и свои ограничения, главным образом из-за сложности геологического строения гор. В результате не всегда удается сопоставить между собой вещественный состав морен, расположенных даже в соседних долинах. Наилучшие возможности для анализа состава морен открываются в тех случаях, когда ледник пересекает несколько разнородных геологических структур. Напротив, наименее ценная информация извлекается при однородном геологическом строении трога (на Кавказе, например, есть троги, целиком заложенные в глинистых сланцах).

Надо сказать, что вещественный состав морен не говорит о том, как разрушается ледниковое ложе, перемещаются и в дальнейшем откладываются обломки в ледниках. Здесь на помощь исследователю приходят структурные методы, характеризующие внешние признаки материала морен: размеры и форму частиц, характер их поверхности и количественное соотношение отдельных компонентов.

Набор структурных методов довольно широк. Остановимся лишь на некоторых из них. Хорошие результаты для выявления условий формирования морен дает гранулометрический анализ. Давно известно, что морены состоят из частиц разной размерности, но важно знать их соотношение. Даже просеивание на простых ситах без последующего взвешивания убеждает, что мелкозем горных морен в основном состоит из гравия и песка, тогда как более тонких частиц мало. Отсюда можно сделать вывод, что в горных ледниках моренный материал в большей степени образуется за счет дробления пород ложа, чем за счет их истирания. Однако для более обоснованных заключений требуется тщательное изучение гранулометрических спектров морен на массовом материале.

Еще более простой, но довольно эффективный метод заключается в измерении формы камней. Массовые замеры осей обломков с последующей статистической обработкой данных открывают путь для познания гляциологических обстановок. В этой связи интересно заметить, что валуны, испытавшие ледниковую обработку, по форме сходны с кристаллами льда в придонных слоях ледников. Изучая камни, особое внимание следует уделять таким специфическим следам пребывания в движущемся льду, как штрихи, борозды, шрамы, сколы. Нередко камни в моренах имеют четкую форму утюга. Учет числа их тоже может стать источником важной информации.

Было бы неверно сводить структурные методы только к простым измерениям. Применение электронной микроскопии позволило обнаружить мельчайшие проявления ледниковой обработки на поверхности кварцевых и гранатовых зерен. Выяснилось также, что зерна минералов в моренах имеют определенную упорядоченность и развернуты длинными осями по направлению движения льда в ледниках. Однако такой микроскопический анализ шлифов из монолитов моренного мелкозема скорее относится к текстурным исследованиям.

Массовые данные по текстуре морен можно получить путем анализа ориентировки удлиненных обломков прямо в экспедиции. На горизонтальных площадках в глубоких шурфах отыскивают камни, у которых длина не менее чем вдвое превышает ширину. Сами замеры ориентировки осуществляются с помощью горного компаса по семи параметрам, а результаты представляются на циклограммах, точно передающих положение обломков в пространстве.

То, что камни в моренах распределены не случайно, было известно еще в конце прошлого века. Накопленные к настоящему времени массовые данные показали, что удлиненные обломки преимущественно ориентированы по направлению движения льда. В последние годы появились данные о том, что совпадение ориентировки галек с ведущим направлением движения льда свойственно главным образом основным моренам, которые формируются непосредственно под движущимся льдом и не подвергаются последующему переотложению.

В горных районах, где направление движения ледников четко контролируется простиранием долин, данные по ориентировке можно непосредственно использовать, чтобы выяснить особенности отложения камней из ледников. На Центральном Кавказе мы проводили текстурные исследования в самом мореносодержащем льду и в разнотипных моренах (рис. 12).

На первых порах нас насторожило, что почти повсеместно в отложенных моренах обломки располагались согласно направлению движения ледника, а построенные циклограммы были настолько убедительны, что могли украсить любой учебник. Конечно, мы тогда еще не знали, что в горах это связано с криогенным сползанием грунта по склонам моренных гряд и холмов. Этот процесс проявлялся в верхнем слое мощностью около метра, и чтобы выяснить истинную ориентировку, нам пришлось впоследствии углубляться в каменные толщи морен почти на 2 м.

Совокупность литологических методов дает возможность определить общие признаки ледниковых отложений или, иными словами, дать их точный «портрет». Одновременно открывается путь для дифференциации обломочного материала, поступающего в ледники из разных источников и перемещаемого в различных гляциодинамических обстановках. Тем самым мы можем установить эталоны для оценки масштабов экзарации.

Работы, проведенные на ледниках Кавказа, Тянь-Шаня и Шпицбергена, позволили выявить фоновые характеристики срединных морен. В них преобладают совершенно не обработанные льдом остроугольные камни, преимущественно уплощенной формы, нередко с коркой горного загара на поверхности. Уплощенность обломочного материала срединных морей, по-видимому, связана с особенностями физического выветривания коренных пород скального обрамления ледников. Для гранулометрического состава типично повышенное содержание гравия и песка, а более мелких частиц немного. Так, доля глинистой фракции в мелкоземе срединных морен редко превышает 1%. Эти выводы оказались справедливыми для срединных морен разных типов, материал которых перемещается как на поверхности, так и внутри ледников.


Рис. 12. Основные типы ориентировки удлиненных обломков

а — в мореносодержащем льду, б, в, г — в конечных моренах; стрелками показаны направления движения ледника

Следует обратить внимание на общее литологическое сходство материала внутренних и поверхностных морен с продуктами субаэрального выветривания, ссыпающимися на поверхность ледников с окружающих склонов. Вероятно, главные причины пассивной транспортировки материала внутренних морен сводятся к его дисперсному распределению во льду и к отсутствию в верхней толще ледников динамических напряжений, достаточных для дробления и истирания камней. Действительно, для верхних частей ледников характерны относительно небольшие вертикальные градиенты скоростей движения льда. В этих условиях обломки транспортируются практически во взвешенном состоянии, и они не испытывают сильных динамических воздействий, которые могут возникать за счет перепада скоростей движения льда у верхних и нижних граней. Поэтому даже вокруг крупных валунов во внутренних частях ледников практически не встречаются гляциодинамические текстуры уплотнения слоев льда. В этой связи становится понятным отсутствие в составе коротких срединных морен обломков с такими характерными индикаторами ледниковой обработки, как штрихи, шрамы, борозды и сколы.

Объективности ради заметим, что гляциологическая информация, извлекаемая из литологических анализов поверхностных и внутренних морен, в определенной степени дублируется и независимо подтверждается другими методами. Совершенно иная ситуация возникает при литологическом изучении донных морен, поскольку в этом случае возможности применения других методов ограничены.

Реконструкция процессов, происходящих в придонных частях ледников, и особенно механизмов взаимодействия ледников с ложем по-прежнему остается одной из наиболее дискуссионных проблем в современной гляциологии. В этом отношении комплексное литологическое изучение морен особенно перспективно, так как оно может предоставить конкретную информацию.

Каменный материал, перемещаемый в базальных частях ледников, по литологическим показателям существенно отличается от обломков в поверхностных и внутренних моренах. В мореносодержащем льду преобладают окатанные и отшлифованные обломки изометричных форм. На поверхности многих камней хорошо заметны свежие штрихи, царапины, шрамы. Некоторые камни расколоты. В отличие от поверхностных морен в мореносодержащем льду заметно возрастает содержание мелкозема, причем доля глинистых и алевритовых частиц (менее 0,1 мм) нередко достигает 10—15% общего веса частиц размером менее 10 мм. На гистограммах гранулометрического состава мелкозема выделяется характерный пик содержания мелкозернистого песка.

Перечисленные выше литологические особенности каменного материала, сконцентрированного в придонных частях ледников, являются показателями гляциодинамических условий его транспортировки. Тот факт, что обломочный материал даже самых прочных кристаллических пород дробится и истирается, подтверждает теоретические предположения, согласно которым придонные слои ледников, обогащенные мореной, являются зоной значительных динамических напряжений. В базальных горизонтах обломки транспортируются, по-видимому, в условиях контрастных вертикальных градиентов скоростей движения льда. Недаром вокруг крупных валунов ясно выражены текстуры уплотнения слоев льда. Широко представлены сдвиговые деформации. В результате образуются многочисленные прослойки режеляционного льда, которые способствуют развитию характерной полосчатости в мореносодержащей толще. Не исключено, что росту напряжений в толще содействуют и сами минеральные включения, уменьшающие пластичность льда.

С увеличением концентрации минеральных включений напряжения частично снижаются за счет формирования сколов и других разрывных деформаций во льду. Вероятно, вследствие этих процессов камни дробятся, на их поверхности появляются четкие сколы и выбоины. Большинство свежерасколотых камней предварительно было обработано льдом. Этот факт косвенно подтверждает предположение о том, что процессы истирания обогащают донную морену рассеянным мелкоземом, снижающим пластичность льда. Основным механизмом движения мореносодержащей толщи становится не пластическое течение льда, а его дискретное скольжение по серии сколов, отчего и разрушаются предварительно обработанные камни. Согласно данным минералогических анализов дробление приводит к расщеплению камней на отдельные минералы.

Не менее интересно присутствие в мореносодержащем льду хорошо окатанных обломков, часть из которых могла быть захвачена ледником из подстилающих рыхлых отложений. Однако обычно такие сглаженные обломки по своей форме сильно отличаются от типичных речных или водно-ледниковых галек.

Эта закономерность наиболее ярко проявляется на Центральном Кавказе и, видимо, вообще присуща донным моренам ледников умеренного типа, поскольку, перемещаясь в условиях интенсивного донного таяния, обломки волочатся и перекатываются по ложу. Перенос обломков в нижних слоях мореносодержащего льда, вероятно, сменяется эпизодическим отложением материала: в частности, в некоторых моренах появляется неупорядоченная ориентировка удлиненных обломков, отклоняющаяся от исправления движения льда в ледниках.

Возможно, в чередовании процессов захвата и отложения камней у ложа ледников отражаются гляциодинамические обстановки донного таяния и динамических напряжений.

Различия материала поверхностных и донных морен практически всегда выражены достаточно резко. Это позволяет выявить долю этих составляющих в отложенных моренах, которые также всесторонне изучались, причем анализировались не только поверхностные, но и внутренние их части. Полученные результаты определенно показали, что в строении большинства ледниково-аккумулятивных форм рельефа преобладает материал, образующийся в результате разрушения ледниками днищ и бортов долин.

Это заключение об интенсивной экзарационной деятельности горных ледников базируется на массовых данных количественных анализов разнотипных морен. Так, например, на графике связи средневзвешенного диаметра частиц (d) и коэффициента сортировки (s0) мелкозема видна общность отложенных морен с каменным материалом мореносодержащего льда ледников, тогда как срединные морены на графике попадают в совершенно иное поле (рис. 13). Значительная часть каменного материала, перемещаемого в основании ледников, откладывается на ложе еще под движущимся льдом. Фрагмент этого процесса нам удалось наблюдать на леднике Ушба на Центральном Кавказе. Обезвоженный горизонт морены видимой мощностью около 4 м переходил в гроте в мощный прослой мореносодержащего льда.

По мнению французского гляциолога Л. Ллибутри, примеси минеральных частиц влияют на способность льда деформироваться, снижая его пластичность. Это ведет к образованию сколов и отслаиванию от движущегося льда наиболее обогащенных камнями придонных частей ледников.

Горизонты основных морен завершаются конечно-моренными грядами, маркирующими максимальное продвижение ледниковых языков во время накопления этих горизонтов. Таким образом, моренные горизонты в горных долинах отличаются чешуйчатым залеганием. В плане конечная морена имеет форму подковы, обращенной выпуклостью вниз по долине. В центральных частях конечно-моренные гряды часто пропиливаются рекой. Нередко они полностью разрушаются водным потоком. Однако и в этих случаях о пребывании ледников можно догадаться по резкому перегибу продольного профиля реки. Гораздо сложнее опознать конечные морены, когда они замаскированы обвально-осыпными конусами.


Рис. 13. Зависимость показателей гранулометрического состава — средневзвешенного диаметра (d) и коэффициента сортировки мелкозема (s0) в разнотипных моренах

1 — срединные морены, состоящие из смеси продуктов экзарации и субаэрального выветривания; 2 — срединные морены, состоящие исключительно из продуктов субаэрального выветривания; 3 — боковые морены; 4 — мелкозем из мореносодержащего льда; 5 — отложенные морены

Наличие серии конечных морен в горных долинах утвердило мнение, что там находятся следы постепенного сокращения ледников, по крайней мере за последние 20—15 тыс. лет. Это представление отражено в глобальных моделях динамики оледенения, разработанных советскими учеными А. В. Шнитниковым, Е. В. Максимовым и др. Действительно, такая последовательность морен существует в природе. Тем не менее нередки случаи, когда более молодые морены налегают на древние (на Памире, Тянь-Шане и в других горных странах). Иногда конечные морены отдельных стадий полностью разрушаются при очередных наступаниях ледников, следами упомянутых стадий остаются лишь «обезглавленные» горизонты основных морен. Это наблюдалось на высокогорном Кавказе. Таким образом, по числу конечных морен далеко не всегда удается полностью восстановить события ледниковой истории гор.

Высота конечных морен может сильно варьировать. Сезонные конечные морены отличаются небольшими размерами, и их высота составляет 1—2 м. Когда перед концом ледника выражена серия таких морен, поверхность ледникового предполья приобретает сходство с гофрированной стиральной доской. Бывают, впрочем, и крупные конечные морены, которые, как правило, отмечают длительное стационарное положение ледникового фронта. Их высота может достигать нескольких десятков метров.

Впрочем, встречаются и гигантские конечные морены. Например, конечная морена ледника Франца-Иосифа на Южном острове Новой Зеландии поднимается на 430 м на прибрежной равнине. Очень крупные морены отмечают положение концов альпийских ледников, спускавшихся на Ломбардскую равнину. Такие конечные морены привлекают пристальное внимание ученых, поскольку, видимо, отражают важные вехи в жизнедеятельности ледников. Предполагают, что наиболее крупные морены, значительно удаленные от концов современных ледников, сформировались во время последней крупной ледниковой эпохи — 20—15 тыс. лет назад.

Как правило, у конечно-моренных гряд склоны, обращенные к леднику, ниже противоположных склонов. По разнице их высот можно приблизительно оценить мощность горизонтов основных морен.

Размеры морен часто зависят от крупности слагающего их материала. Морены, насыщенные крупными глыбами, более устойчивы к эрозии, поскольку талые воды не в состоянии уносить крупные обломки. На днищах некоторых долин иногда попадаются огромные, отдельно стоящие камни — это все, что осталось от конечно-моренных гряд. При визуальных наблюдениях было установлено, что у концов современных ледников конечные морены содержат глыбы погребенного льда. Такие морены с ледяным ядром, как правило, более распространены в горах Арктики, в умеренных широтах они редки. Геофизические методы показали, что мощность погребенных глыб льда достаточно велика. Со временем ледяное ядро вытаивает и соответственно высота и форма гряды меняются. Сейчас разработаны принципы, позволяющие распознавать морены с ледяным ядром на аэрофотоснимках. В самом общем случае, если конечная морена у конца ледника отличается большими размерами, можно предполагать, что она содержит ледяное ядро. Кроме того, на ее поверхности хорошо заметны термокарстовые воронки, связанные с таянием погребенного льда. С этим же процессом связано возникновение характерных форм оплывания грунта.

Конечно, ученых давно интересовал вопрос, как долго может сохраняться ледяное ядро в моренах. Чаще всего считали, что эти формы очень молоды, пока норвежский ученый X. Эстрем не провел специальное исследование. Из конечной морены ледника Гросубреен на юге Норвегии он вытаял 200 кг погребенного льда, откуда удалось извлечь всего 3 г углерода. Этого мизерного количества оказалось достаточно для радиоуглеродного датирования: возраст морены 2600±100 лет. Впрочем, не исключено, что морены с ледяным ядром могут быть и существенно древнее.

Детальные литологические исследования установили, что морены с ледяным ядром образуются из материала мореносодержащего льда. При наступании ледников слои этого льда выдавливаются к поверхности, где впоследствии каменный материал вытаивает и погребает нижележащий лед. По-видимому, это довольно распространенный способ формирования морен в горах.

В том случае, когда ледник длительное время стабилен, конечные морены могут образоваться за счет камней, ссыпающихся с его поверхности. Иногда при этом вырастают валы высотой до 5 м. Такие конечные морены, называемые насыпными, легко выделяются, ибо сложены каменным материалом поверхностных морен.

Самые крупные конечные морены принадлежат к типу напорных и прекрасно иллюстрируют колоссальные масштабы геологической деятельности ледников. Активно наступающие концы ледников деформируют и сминают в складки подстилающие отложения и передвигают массы грунта на значительные расстояния. В составе напорных морен часто присутствует материал неледникового происхождения: аллювий, озерные пески и глины, торф, нередко с крупными растительными остатками. Известны случаи, когда в моренах находили целые стволы деревьев. Например, в морене ледника Большой Азау, спускающегося с Эльбрусского массива, Г. В. Абих в 1847 г. обнаружил стволы сосны со свежими ветками и хвоей и тем самым доказал, что ледники Кавказа незадолго до этого активизировались. Аналогичные находки удалось сделать и в других районах, однако в целом они не так уж часты.

Формирование напорных морен во многом определяется термическими условиями на ложе ледника и составом подстилающих пород. Ясно, что леднику гораздо легче расправиться с пластичными глинами, чем с мерзлыми грубообломочными осадками.

Известны случаи, когда ледники, спускавшиеся во фьорды, пересекали их и выталкивали со дна толщи осадки с многочисленными раковинами морских моллюсков. Одну из таких морен в верховьях Ван-Мейен-фьорда нам показал Л. С. Троицкий, энтузиаст палеогляциологического изучения Шпицбергена. Впоследствии на Тянь-Шане мы наблюдали четко выраженные напорные морены с крупными гляциодислокациями — смятыми в складки и осложненными сбросами пачками захваченных ледником рыхлых отложений.

Типичной формой ледниковой аккумуляции в горах являются также береговые морены. В рельефе они выражены лучше, чем конечные, и считаются их морфологическим продолжением вдоль бортов ледников. Береговые морены могут непосредственно прислоняться к бортам трогов и иметь односторонний крутой склон. Это чаще всего наблюдается на суженных участках долин. Нередко береговые морены представляют собой гряды, отделенные от бортов трогов ложбинами стока и имеющие асимметричное строение: склоны, обращенные к леднику, более круты, чем противоположные. Рассматриваемые гряды на десятки метров возвышаются над поверхностью ледника, маркируя ее положение в прошлом.

Как правило, береговые морены прослеживаются сериями, в результате склон трога, обращенный к леднику, приобретает четко выраженную ступенчатую форму. По береговым моренам реконструируется последовательное убывание ледников.

Происхождение береговых морен до недавних пор оставалось неясным. Сложилось представление, что основной источник береговых морен — материал субаэрального выветривания, перемещаемый вдоль бортов ледника в виде боковых морен. Однако при этом возникал вопрос: могло ли субаэральное выветривание поставить массу обломочного материала, слагающего береговые морены, высотой по 60—70 м? Возникали сомнения и по поводу длительности рассматриваемых процессов, но сейчас точно установлено, что мощные береговые морены образуются очень быстро.

Именно поэтому мы решили провести литологический анализ материала береговых и боковых морен. Поскольку формирование срединных морен на основном леднике часто происходит в результате слияния боковых морен ледников-притоков, мы ожидали, что по литологическим показателям срединные и боковые морены будут идентичны. Однако полученные данные совершенно не укладывались в привычные схемы. Оказалось, что по составу и строению боковые и береговые морены очень похожи на материал мореносодержащего льда, а количество продуктов субаэрального выветривания в них незначительно. Как же объяснить этот парадоксальный факт?

Мы приняли во внимание, что в пределах ледниковых языков движение льда осуществляется не только вниз по долине, но и к ее бортам. Причем особенно сильна боковая составляющая на тех участках ледника, где преобладает течение сжатия. Логично было бы предположить, что часть мореносодержащего льда перемещается от ложа ледника к его бортам и, следовательно, является важным источником формирования боковых морен.

Для проверки данного предположения мы провели дополнительные полевые исследования в прибортовых частях ледников, а где было возможно, спускались в трещины и промоины во льду. Нам удалось наблюдать, как мощные пачки мореносодержащего льда вздымаются от ложа ледников к их бортам. Замеры ориентировки удлиненных обломков подтвердили, что в отдельных частях ледников поперечное растекание льда происходит особенно активно.

Постепенно прибортовые участки ледников насыщаются мореной, что приводит к уменьшению их пластичности, выключению из общего движения ледников и постепенному омертвению. Так начинается процесс трансформации боковых морен в береговые гряды. Последовательность этого процесса хорошо прослеживается на аэрофотоснимках ледников во многих горных странах. Проведенные в последние годы геофизические исследования показали, что в береговых моренах часто встречается погребенный лед, — еще одно подтверждение нашей модели.

Конечно, в боковые части ледников попадает обломочный материал и со склонов ледосборов, но он присутствует лишь в самых верхних частях береговых морен и по объему значительно уступает обработанным льдом камням, поступившим из-под ледника. В этом легко убедиться, если внимательно приглядеться к крутым обрывам береговых морен, подрезанных ледником. Здесь сразу бросается в глаза наличие окатанных камней, плотно сцементированных мелкоземом. В тех местах, где морена примыкает к борту трога, она может быть перекрыта обвально-осыпными шлейфами. Двучленное строение береговых морен подчеркивается, когда материал, поступающий из разных источников, четко различается по цвету. В целом береговые морены очень быстро разрушаются, чему в немалой степени способствует вытаивание глыб погребенного льда, а также обвально-осыпные процессы. Иногда на склонах береговых морен, сильно расчлененных эрозией, вырабатываются специфические формы — земляные пирамиды.

Как мы убедились, ледники способны не только разрушать горы, но и производить немаловажную созидательную работу, формируя целый класс аккумулятивных форм рельефа и связанных с ними рыхлых отложений — морен. Именно в этих образованиях заключена богатая информация о жизнедеятельности ледников. Недаром морены составляют основу всех палеогляциологических реконструкций. При этом, однако, не следует забывать, что достоверность наших представлений о динамике ледников и эволюции горного оледенения определяется не формальным подходом к изучению морен, а глубоким познанием их состава и строения, а также процессов их формирования.

<<< Назад
Вперед >>>

Генерация: 5.265. Запросов К БД/Cache: 3 / 1
Вверх Вниз