Книга: Ледники в горах

Мореносодержащий лед

<<< Назад
Вперед >>>

Мореносодержащий лед

Обломки горных пород встречаются не только на поверхности и в теле ледника, но и у его основания. Причем камней там может быть так много, что даже выделяют особый тип ледникового льда — мореносодержащий. Мощность его, измеряемая всего несколькими метрами, не идет ни в какое сравнение с общей мощностью ледников, поэтому значение мореносодержащего льда часто недооценивается даже специалистами. Между тем этот пограничный с ложем горизонт оказывает существенное влияние на многие аспекты жизнедеятельности ледников, включая их термический режим, динамику и геологическую деятельность.

Ясно, что изучить загадочные процессы, скрытые под многометровой толщей льда, не так просто. Благоприятные возможности для проведения таких исследований имеются лишь в краевых частях ледников, где можно подобраться к ложу, используя глубокие трещины и туннели. Нередко мореносодержащий лед вскрывается в стенках эрозионных промоин, пересекающих поля мертвого льда; кроме того, этот лед виден в перевернувшихся айсбергах.

Мореносодержащий лед наблюдался в основании десятков ледников. Его мощность сильно колебалась, на выступах коренных пород она составляла не более 20—50 см, а в понижениях рельефа — несколько метров. Замечено, что мощность мореносодержащего льда непосредственно зависит от прочности пород ледникового ложа и даже в небольших долинных ледниках, залегающих на податливых к механическому воздействию песчаниках и алевролитах, достигает 15 м и более. Напротив, если ледники пересекают прочные гранитные породы, мощность обогащенного мореной льда невелика — в среднем всего 1—1,5 м.

В этом мы убедились, проводя гляциологические исследования на Шпицбергене на леднике Норденшельда, который спускается к берегу бухты Адольф в Билле-фьорде.

Ложе ледника выработано в очень прочных, сильнометаморфизованных породах формации Гекла-Хук: биотитовых гранитах, кварц-биотитовых ксенолитах, порфиритах и кварцитах. Мягкие песчаники и алевролиты, как предполагают геологи, скрыты преимущественно только под левой частью ледникового языка. Здесь край ледника Норденшельда сильно истоньчается и в некоторых местах прорезан ложбинами стока талых вод. В прогалинах отчетливо заметно двучленное строение ледника: под верхней толщей чистого льда залегает мощный (4—5 м) горизонт мореносодержащего льда, насыщенный обломками песчаников и алевролитов. Зато в основании центральной, динамически более активной, части ледника толщина мореносодержащего льда заметно уменьшается до 0,5—1,5 м, а среди камней начинают преобладать обломки пород формации Гекла-Хук.

Сколько же каменных обломков содержится в ледниках? Дж. Эндрюс подсчитал, что на леднике Барнс объем камней составляет всего 0,05% общего объема льда во всей области абляции, но в отдельных частях ледников объем камней может быть гораздо больше. В том же леднике в сильно загрязненном льду содержание минеральных частиц возрастает до 8%, а в базальных слоях мореносодержащего льда некоторых ледников Шпицбергена — до 50%. Впрочем, и это не предел; в наиболее загрязненной части ледника Кейсмент в Кордильерах объем камней достигает 64%.

Обычно каменными обломками наиболее насыщены самые нижние пачки мореносодержащего льда, а выше концентрация камней существенно уменьшается. Над мореносодержащим льдом на некоторых ледниках фиксировали слой льда с желтоватой, а иногда буроватой окраской. Этот горизонт, называемый янтарным льдом, содержит лишь незначительные включения алевритовых и песчаных частиц, а также отдельные вкрапления гальки; по мощности он в несколько раз меньше собственно мореносодержащего льда. Сложилось представление, что янтарный лед образуется, когда в ледниках возникают благоприятные условия для проникновения минеральных частиц из мореносодержащего горизонта в вышележащие слои чистого льда.


Ледник Семенова спускается с массива Хан-Тенгри, заполняя верхнюю чисть Сары-Джазской долины


Продвинувшийся вперед конец ледника Безенги. Вдали видна знаменитая Безенгийская стена


Главный хребет Большого Кавказа — крупный район оледенения. С вершины Тетнульд спускается висячий ледник Лахура, внизу — язык крупного долинного ледника Адиши


Крутой борт одного из ледников массива Ак-Шийрак


Хребет Куйлю на Тянь-Шане — крупный центр оледенения


Полосы срединных морен на леднике Коёнды на Тянь-Шане (фото В. М. Лукина)


Причудливые туннели и арки из льда

Правый борт одного из ледников в хребте Кунгей-Ала-Тоо (Тянь-Шань)


Ледник Адиши — идеальный объект для изучения полосчатости льда. В центре ледникового языка крупный каменный холм — след недавнего горного обвала


Пульсирующий ледник Медвежий на Памире разбит глубокими трещинами (фото В. М. Лукина)


Человек с фантазией среди глыб льда может разглядеть диковинных зверей. Этот зверь тоже интересуется: какова глубина трещин (фото В. М. Лукина)


Камни в придонных слоях льда — орудия ледникового выпахивания


Поверхность скал, недавно освободившихся от льда, испещрена бороздами и штрихами


Крупные напорные конечные морены окаймляют концы ледников Трюггвебреен и Зандербреен на Шпицбергене


Рис. 8. Свежеотложенная морена в 20 м от конца ледника Караколтор (Центральный Тянь-Шань). Четко виден контакт морены со штрихованной поверхностью коренных пород

Хотя проблема взаимодействия ледника с ложем занимает центральное место в динамической гляциологии, необходимо отметить, что чистый лед не в состоянии сильно воздействовать на подстилающие более прочные породы. Разрушается ложе лишь в том случае, если в основание ледника включены камни. По поводу их появления имеется несколько предположений. Одно из них сводится к тому, что камни были рассеяны по днищам «доледниковых долин». Это согласуется с находками останцов сильно выветрелых коренных пород на водоразделах. По-видимому, такие же коры выветривания были распространены и в долинах, где легко подверглись экзарации, насыщая обломками основание ледников. В некоторых моренах Центрального Кавказа обнаружены сильно корродированные зерна минералов — свидетельства глубоко зашедшего химического выветривания. Это еще раз подтверждает возможность вовлечения древних кор выветривания в сферу экзарации. Мощность их измерялась несколькими метрами. Нельзя также исключить попадание обломков на ложе с поверхности ледников по линиям тока льда, направленным в области питания вниз, к основанию ледника.

Разрушение ледникового ложа идет несколькими путями.

Наиболее очевидный механизм — абразия, или истирание. Предпосылкой данного процесса служит донное скольжение льда, содержащего обломки разных размеров, по массивным прочным породам (рис. 8). В этом отношении по своему действию на ложе ледники мало отличаются от других абразивных материалов, и здесь можно провести аналогию с воздействием наждачной бумаги на дерево.

Анализируя процессы абразии, английский геоморфолог Дж. Боултон предложил различать воздействие крупных обломков, вмерзших в основание ледника, что обычно приводит к образованию штрихов и борозд, и собственно абразионную полировку ложа мелкоземом, который находится между крупными обломками и ложем. Чтобы выяснить эффект абразии, на контакте мореносодержащего льда с ложем плотно закреплялись металлические пластины. При повторном осмотре уже через несколько недель поверхность пластин была испещрена штрихами.

Помимо натурных экспериментов, неоднократно ставились и лабораторные опыты как с самим льдом, так и со сходными по свойствам материалами. Полученные результаты подтвердили, что мореносодержащий лед может разрушать скальные породы и образовывать специфические абразионные микроформы. Из этих же опытов выяснилось, что тонкие частицы не являются эффективным абрадирующим материалом, поскольку их поверхности быстро сглаживаются. Соответственно для абразии необходимо поступление к ложу свежих частиц. Некоторая часть из них может образоваться в результате дробления крупных камней.

Темпы абразии непосредственно зависят от скорости движения мореносодержащего льда, так как с увеличением скорости возрастает количество обломков, воздействующих на единицу площади ложа.

К числу наиболее легко абрадируемых пород относятся некоторые разновидности фельзитов и известняков, а также жильный кварц. В процессе абразии лед пополняется тончайшими частицами, которые иногда называют ледниковой мукой или пудрой. В пользу абразивного происхождения этого материала свидетельствует тот факт, что во многих моренах от 60 до 70% алевритовой фракции представлено кварцем, кальцитом и полевым шпатом, а выветрелых глинистых минералов немного.

Не менее важным механизмом экзарации является ледниковое выпахивание, которое, как полагают, более эффективно, чем абразия, и контролируется первичной трещиноватостью пород ложа и процессами режеляционного льдообразования.

Механизм выпахивания наиболее просто объясняется в тех случаях, когда ложе ледника состоит из рыхлых и сильно выветрелых отложений. Однако ледник, несомненно, может разрушать также устойчивые массивно-кристаллические породы. У. Льюис показал, что ледник способен выламывать крупные глыбы даже самых прочных пород и, вероятно, именно этим объясняется ступенчатость продольных профилей многих трогов. Существенными предпосылками для подобного выпахивания являются резкие смены процессов таяния и замерзания у ложа ледника.

Для выпахивания необходимо предварительное растрескивание ложа на отдельные блоки. В горных районах данное условие почти всегда соблюдается. Ледники там приурочены к глубоким долинам, заложенным на месте тектонических разломов, что само по себе предопределяет повышенную трещиноватость пород ложа. Растрескивание пород усугубляется в результате разгрузки давления под мощным льдом. По мере врезания льда в ложе породы с удельным весом 2,5 г/см3 замещаются льдом с удельным весом 0,9 г/см3. Такое снижение плотности, естественно, может вызвать появление трещин горизонтальной дилатации, обычно приуроченных к ослабленным зонам в самих горных породах.

Другая причина образования трещин — быстрое уменьшение мощности льда при сокращении оледенения. Английский исследователь У. Харленд, работавший на ледниках Шпицбергена, в 1957 г. выдвинул следующую гипотезу: при отступании ледников растрескивание ложа зависит не только от уменьшения нагрузки, но и от криогенных процессов. Есть основание полагать, что выпахивание эффективнее проявляется в породах, где расстояние между трещинами колеблется от 1 до 7 м.

Хотя механизм выпахивания еще до конца не раскрыт, по-видимому, самую важную роль в нем играют перепады давления из-за толчкообразного характера движения ледников. Это приводит к плавлению льда на выступах ложа. Образующаяся водная пленка проникает в трещины подстилающих пород, где снова замерзает, и породы разрушаются.

В пользу такого механизма свидетельствуют натурные наблюдения в глубоких ледниковых туннелях в Альпах. Измеренные скорости движения и температуры базальных слоев льда, как выяснил X. Карол, оказались вполне достаточными для того, чтобы на выступах ложа чередовались процессы таяния и замерзания льда. В нашей стране к процессам подледникового выветривания привлек внимание видный мерзлотовед А. И. Попов.

Реальность криогенной подготовки пород ложа для экзарации подтверждается аналитическим изучением моренного мелкозема. Так, на субполярных ледниках Шпицбергена и Тянь-Шаня, у которых в основании, по всей вероятности, часто проявляются фазовые переходы воды, глины и алеврита в мореносодержащем льду действительно больше, чем в умеренных ледниках Кавказа, где, по теоретическим предположениям, условия для подледникового выветривания менее благоприятны.

Непосредственными орудиями выпахивания служат крупные валуны, контактирующие с ложем ледников. В этом мы убедились на леднике Семенова, расположенном в верховьях реки Сарыджаз на Тянь-Шане. Нам удалось обследовать подледниковый грот протяженностью около 300 м. Во многих местах было заметно, как крупные окатанные валуны из мореносодержащего льда налегают на отщепленные мало сдвинутые угловатые блоки коренных пород.

Все три процесса — абразия, выпахивание и подледниковое выветривание — протекают одновременно и тесно связаны между собой. В результате каждый из них вносит свой вклад в формирование общего облика мореносодержащего льда: выпахивание обогащает его крупными камнями, а абразия и выветривание — мелкоземом.

В пользу экзарационной деятельности ледников свидетельствует петрографический анализ крупных обломков пород, извлеченных из мореносодержащего льда, в частности находка кварцевых дацитов в материале донной морены ледника Дыхсу на Кавказе. По данным академика Д. С. Белянкина, эта порода вообще не встречается на склонах, обрамляющих ледник. Остается предположить, что под ледником скрыта дацитовая дайка.

Петрографический и минералогический анализы могут быть привлечены и для выяснения положения участков ложа, наиболее сильно разрушаемых ледниками. Такой подход особенно эффективен, когда ледники пересекают геологические структуры разного состава. В результате специальных исследований на нескольких крупных долинных ледниках Кавказа, Тянь-Шаня и Шпицбергена выяснилось, что зона наибольшей экзарации располагается в районе кинематической границы питания. Кроме того, на сложнодолинных ледниках дополнительные очаги экзарации возникают на участках слияния ледников-притоков. Следовательно, не вызывает сомнения тот факт, что ложе ледника наиболее интенсивно разрушается именно там, где максимальные скорости движения и мощность льда.

Итак, зная вещественный состав морен, можно реконструировать многие важные гляциологические показатели.


Рис. 9. Петрографический состав крупнообломочного материала морен ледника Норденшельда на Шпицбергене

Породы формации Гекла-Хук (докембрий—ордовик): а — биотитовые граниты, кварц-биотитовые ксенолиты, лампрофиры, порфириты, биотитовые мигматиты и другие породы интрузивного комплекса; б — кварциты и кварцевые сланцы; в — амфиболиты; г — гранатовые слюдяные сланцы. Осадочные породы палеозоя: д — песчаники и алевролиты нижнего карбона; е — гипсоносные и карбонатные породы среднего карбона; ж — циатофилловые известняки верхнего карбона — нижней перми; з — морены

В качестве иллюстрации перспективности литологического исследования морен в гляциологических целях приведем некоторые данные по леднику Норденшельда на Шпицбергене (рис. 9). Эта сложная ледниковая система состоит из двух основных потоков льда: северный, более мощный, течет из центра ледникового плато Ломоносова; южный, менее активный, начинается из периферической юго-западной части плато. В настоящее время ледник разрушает ядро крупной гранитной интрузии, целиком скрытой подо льдом, но тем не менее предопределяющей динамику ледника, включая прежде всего размещение отдельных его потоков.

Сильно расчлененный ледником рельеф кровли гранитной интрузии отчетливо выражен на радиоэхограммах, полученных группой советских геофизиков под руководством Ю. Я. Мачерета. Наибольшая экзарация ложа происходит в полосе, пересекающей нунатаки Флемингфьеллет, Терьерфьеллет и Ферьерфьеллет.

Изучение состава конечных морен, удаленных на несколько километров от конца ледника, показало, что во время их формирования динамика ледника была существенно иной. Тогда ледник преимущественно разрушал осадочные породы палеозоя, слагающие ложе к западу от границы гранитной интрузии. Таким образом, в целом по мере сокращения размеров ледника Норденшельда кинематическая граница питания мигрировала вверх по леднику, о чем можно судить по последовательному смещению зоны максимальной экзарации в сторону ледникового плато Ломоносова.

Приведем еще один пример реконструкции динамики горного ледника на Центральном Кавказе. Палеогляциологические исследования в долине реки Черек Безенгийский позволили установить, что около 5 тыс. лет назад Безенгийский ледник был на 10 км больше современного и формировал комплекс конечных морен беккямской стадии.

В то время активно преобразовывался участок долины, сложенный лейкократовыми гранитами, биотитовыми и гранатовыми сланцами и гнейсами. По мере сокращения длины ледника зона максимальной экзарации последовательно смещалась вверх по долине, и при накоплении морен юанахчирской (около 3 тыс. лет назад) и наратлинской стадий (700—800 лет назад) переуглублялась зона биотитовых и частично лейкократовых гранитов. При формировании самых молодых морен (XIX — начало XX в.) наибольшей экзарации подвергался участок трога, сложенный плагиогранитами; он располагался несколько выше современного конца ледника. В настоящее время мореносодержащий лед наполнен обломками кварцевых диоритов и гранодиоритов, интрузии которых находятся в 5—8 км выше конца ледника.

Обломочный материал, образующийся в результате разрушения ложа за счет перечисленных выше механизмов, ассимилируется нижними горизонтами льда. На данном этапе, по-видимому, большое значение приобретает дифференцированное скольжение ледяных пластин по плоскостям внутренних сколов. По этим плоскостям способны перемещаться и очень крупные глыбы. Подсчитано, что ледники могут захватывать с ложа камни размером до 20 м в поперечнике. Плоскости сколов обычно имеют наклон от ложа вверх, по направлению движения ледника.

Р. Голдтвейт, проводивший структурные исследования льда на леднике Барно, установил, что плоскости скола образуют с ложем углы от 10 до 36°. Согласно его расчетам обломочный материал поступает по плоскостям с участка ложа, удаленного на 400 м от края ледника, где мощность льда составляет 60 м. В Гренландии плоскости сколов, обогащенные камнями, были зафиксированы на расстоянии 275 м от входа в глубокий туннель.

Механизм внедрения обломков в базальные части ледников, скорее всего, связан с их включением в лед при замерзании режеляционной пленки воды. Иногда по плоскостям сколов в ледники затягиваются целые пачки подстилающих мерзлых слоистых осадков — песков, алевритов, глин. Об одном из таких случаев сообщает Л. С. Троицкий, обнаруживший в основании ледника Валлокра на Шпицбергене в мореносодержащем льде пласт суглинков мощностью до 2 м, набитый раковинами морских моллюсков. Пласт был пронизан тонкими ледяными прослойками — шлирами, характерными для мерзлых грунтов. Можно предположить, что в данном случае плоскость скола была заложена не по кровле примороженных к леднику суглинков, а по одному из их внутренних ледяных шлиров, совпадающему с напластованием осадков. Конечно, конкретные механизмы поступления минеральной составляющей в основание ледников раскрыты еще не до конца. Но тем не менее ясно, что именно здесь кроется одна из узловых проблем динамической гляциологии. В этом отношении весьма перспективно структурное изучение мореносодержащего льда.

Обратим внимание, что в нижней части ледника часто заметна полосчатость, образование которой связывают с послойно-пластическим характером движения льда по внутренним плоскостям скольжения. Отличительным признаком полосчатости является чередование тонких прослоев молочно-белого льда с прозрачным и льдом, обогащенным обломочным материалом. По мнению советского гляциолога С. А. Евтеева, проводившего детальные структурные исследования в краевой части Антарктического покрова, во время послойно-пластического течения лед вдоль плоскости среза, по-видимому, частично плавится. При последующем замерзании он образует чистый, лишенный воздушных включений «хрустальный» лед. Последний чередуется со льдом, несущим большое количество обломочных частиц, и мутным белым льдом, в который мигрировали воздушные включения при таянии. Эта полосчатость, напоминающая слоеный пирог, хорошо выражена также в основании многих горных ледников.

Итак, мореносодержащий лед — важная составная часть ледников, и без его специального изучения невозможно понять, как ледники разрушают горы, выяснить происхождение многих специфических форм рельефа, которые встречаются в областях, ныне свободных от льда.

<<< Назад
Вперед >>>

Генерация: 6.202. Запросов К БД/Cache: 3 / 1
Вверх Вниз