Книга: От атомов к древу. Введение в современную науку о жизни

Первая жизнь

<<< Назад
Вперед >>>

Первая жизнь

Когда на Земле появилась жизнь? Самый распространенный до недавнего времени ответ на этот вопрос таков: древнейшие предполагаемые остатки живых организмов найдены в Гренландии, в горных породах зеленокаменной формации Исуа, имеющих возраст 3,8 миллиарда лет. Значит, к этому времени жизнь уже точно существовала. Правда, неизвестно, какая именно. И вот тут таится первая проблема. Дело в том, что найденные в Исуа остатки не сохранили никаких следов структуры живых клеток. Это зерна чистого углерода, и вывод о том, что они когда-то были живыми существами, сделан исключительно по составу этого углерода.

Чтобы понять, в чем тут дело, вспомним, как устроены атомы (см. главу 1). Главный параметр любого атома — число протонов, или атомный номер (Z). Только от него зависит, к какому химическому элементу атом относится. Однако в атомном ядре есть не только протоны, но и нейтроны. Суммарное количество протонов и нейтронов в ядре данного атома называется его массовым числом (A). И вот оно у атомов одного и того же элемента может различаться. Например, любой атом, в ядре которого шесть протонов, будет атомом углерода. Но есть несколько разных типов атомов углерода, например с шестью нейтронами в ядре (12C) или с семью нейтронами в ядре (13C). Атомы, имеющие одинаковый атомный номер, но разное массовое число, называются изотопами.

Углекислый газ (CO2) может включать в себя как атом 12C, так и атом 13C. Но вот белок, связывающий углекислый газ для фотосинтеза, гораздо охотнее захватывает молекулы CO2 с углеродом 12C просто потому, что они более легкие. В результате происходит разделение изотопов. На самом деле оно идет не только при фотосинтезе, но и при других способах биологической фиксации CO2, но фотосинтез — самый распространенный из них на современной Земле. Однако в любом случае отсюда следует, что живые организмы, прямо или опосредованно питающиеся продуктами фиксации углекислоты — то есть практически все живые организмы на свете, — имеют смещенное соотношение «легкого» и «тяжелого» изотопов углерода: доля «тяжелого» изотопа там заметно понижена по сравнению с атмосферным углекислым газом. А это означает, что, найдя чистый углерод, можно по соотношению 12C/13C определить, является ли этот углерод биогенным, то есть входил ли он когда-нибудь в состав живого тела.

Но что, если при переплавлении горных пород заработал какой-нибудь другой, чисто физический механизм разделения изотопов углерода? Это теоретически возможно, и некоторые ученые считают, что в случае с породами Исуа именно так оно и было[424]. Тогда «следы самой древней жизни» исчезают. Нельзя сказать, что эта тема закрыта, но статус пород Исуа сейчас определенно под сомнением. Печальнее всего, что биологи тут и сделать ничего не могут — решающее слово принадлежит геологии и изотопной химии. Биогенное происхождение углерода из Исуа не исключено, оно просто спорно. С другой же стороны, в самое последнее время появились данные, что в формации Исуа есть остатки строматолитов — слоистых бактериальных колоний, но это еще требует проверки[425].

В любом случае зеленокаменная формация Исуа, судя по всему, не предел. Недавно было объявлено, что найден предположительно биогенный углерод возрастом 4,1 миллиарда лет[426] [427]. Это совершенно поразительно, потому что для настолько древних времен почти неизвестны полноценные горные породы. Главные сохранившиеся с тех пор твердые объекты — это мелкие зерна чрезвычайно устойчивого минерала циркона, захороненные где-нибудь в более поздних осадках. Вот в составе этих цирконовых зерен геологи и нашли углерод со смещенным изотопным соотношением, типичным для живых организмов. По оценке авторов исследования, другие пути разделения изотопов в данном случае маловероятны, так что это могут быть следы жизни — невообразимо древней жизни! Какой она была, остается загадкой, ведь в изученных образцах налицо только химический сигнал.

Между тем первые живые организмы могли очень сильно отличаться от современных — причем под «современностью» в данном случае приходится подразумевать не более и не менее как последние три с лишним миллиарда лет. Например, мы знаем, что в современной цепочке передачи генетической информации есть три главных звена: копирование ДНК (репликация), синтез РНК (транскрипция) и синтез белка (трансляция). При этом молекулярные данные свидетельствуют, что у общего предка всех клеточных организмов системы транскрипции и трансляции были намного более простыми, чем у современных клеток, а системы репликации ДНК не было совсем. Еще Карл Вёзе показал, что белки репликации бактерий не имеют ничего общего с белками репликации архей и эукариот[428]. Скорее всего, это означает, что весь механизм копирования ДНК возник минимум дважды — у бактерий и у архей (эукариоты унаследовали его от последних). Тогда получается, что у общего предка всех их, вместе взятых, генетическая информация хранилась в основном на РНК, как и предполагает популярная в наше время теория «РНК-мира».

Кроме того, этот общий предок вполне мог еще не достичь так называемого дарвиновского порога — момента, когда интенсивность привычной нам вертикальной передачи генов (от предков к потомкам) начала существенно превышать интенсивность горизонтального переноса генов (между соседними геномами независимо от родства). Понятие «дарвиновский порог» (Darwinian Threshold) ввел тот же Карл Вёзе — он вообще много занимался ранними этапами эволюции. Нам сейчас трудно вообразить, как выглядела жизнь по ту сторону дарвиновского порога, но ясно, что тогдашние организмы были предельно изменчивы: никаких устойчивых видов в тех условиях существовать не могло. Нетрудно догадаться, что устойчивость биологических видов определяется именно надежной передачей генетической информации от предков к потомкам. Когда этот механизм еще не сложился, мир был совершенно другим. Вёзе потому и назвал порог дарвиновским, что его переход означал происхождение видов в самом что ни на есть буквальном смысле слова «вид» (а «Происхождением видов», как известно, называется главная книга Дарвина). Живые системы, не достигшие дарвиновского порога, просто не могли распадаться на биологические виды таким же образом, как распадается на них жизнь сейчас.

Самые древние более-менее достоверно определимые остатки живых клеток имеют возраст 3,4 миллиарда лет[429]. Это уже типичные прокариоты, скорее всего входящие в дожившую до современности группу сульфатредуцирующих бактерий. На этой отметке заканчивается туманная повесть о происхождении жизни и начинается ее собственная история.

<<< Назад
Вперед >>>

Генерация: 0.795. Запросов К БД/Cache: 3 / 1
Вверх Вниз