Книга: Все эти миры — ваши. Научные поиски внеземной жизни

Мы все состоим из звездной пыли

<<< Назад
Вперед >>>

Мы все состоим из звездной пыли

Периодическая таблица Менделеева — настоящее произведение искусства. Это также наиболее удачная из когда-либо созданных научных схем‹‹6››. Она описывает все известные науке химические элементы и демонстрирует с невероятной наглядностью, как свойства вещества зависят от структуры его атомов. Элементы периодической таблицы образуют последовательность: каждый элемент описывается своим атомным числом, которое равно количеству протонов в его ядре. В ядре атома водорода — один протон, у гелия — два (уравновешенные двумя нейтронами), у лития — три и т. д. Это позволяет нам ответить на некоторые основополагающие вопросы мироздания (настолько основополагающие, что вы никогда о них не задумывались): существуют ли химические элементы легче водорода? Может ли существовать неизвестный науке элемент между водородом и гелием? Ответ на оба эти вопроса отрицательный — нельзя составить ядро атома, взяв какую-то часть протона. В периодической таблице нет пробелов: нам известны все существующие в природе элементы от водорода до урана (92 протона). Мы даже знаем последовательность элементов тяжелее урана — так называемые трансурановые элементы. Это короткоживущие, радиоактивные, нестабильные элементы, которые были искусственно получены в ядерных лабораториях.

Откуда взялись все эти элементы? Случайность ли то, что на Земле оказался их полный набор? Давайте вернемся к самому началу: если начать отсчет в момент Большого взрыва, то к тому времени, как вы досчитаете до 200 или около того, наблюдаемая Вселенная будет размером примерно в один световой год в диаметре. Все, что мы считаем «нормальной материей» — протоны, нейтроны, электроны, — находится в состоянии плазмы при температуре несколько миллионов градусов. Только что закончилась фаза первичного нуклеосинтеза, в ходе которой в результате слияния ядер водорода образовывались ядра гелия. Может показаться, что это фаза была не слишком продуктивной: лишь около 25 % от общей массы рассеянного во Вселенной водорода превратилась в гелий. Далее незначительная‹‹7›› часть получившегося гелия трансформировалась в литий. На этом все и закончилось. За последующие 600 млн лет не было создано никаких новых химических элементов.

Разумеется, обидно сознавать, что за кратким периодом бурной деятельности последовал столь долгий перерыв, но для этого имелись веские причины. Ядерный синтез возможен лишь в условиях огромных температур и плотностей‹‹8››. Такие условия существовали лишь в течение нескольких минут на раннем этапе существования Вселенной. В следующий раз они сложатся только после того, как возникнут первые звезды, и в условиях сверхвысоких температур и плотностей в недрах этих звезд вновь запылает огонь термоядерного синтеза.

Звезды — это настоящие ядерные скороварки, где элементы сливаются в термоядерном пламени, производя все более и более тяжелые атомные ядра вплоть до железа (содержащего 26 протонов). Вследствие некоторых особенностей физики элементарных частиц синтез атомных ядер легче железа в условиях высокой температуры и давления приводит к выделению небольшого количества дополнительной энергии. Эта энергия позволяет плазме оставаться горячей и тем самым поддерживает реакцию термоядерного синтеза. Но у атомных ядер тяжелее железа каждое слияние требует дополнительной энергии: в результате температура звезды снижается и ядерное буйство со временем затухает. Вследствие этого звезды, особенно массивные, способны производить элементы с атомным числом меньше железа, и не более того.

Это примерно третья часть всех элементов периодической таблицы. Откуда же взялись все остальные? В конце жизненного цикла звезд, когда огромное давление их внешних оболочек больше не способно поддерживать реакцию термоядерного синтеза в центре звезды, может произойти катаклизм. Звезды с низкой массой — одного порядка с массой Солнца — кончают свой жизненный цикл как белые карлики — тлеющие звездные «угли», которые когда-то были горячим ядром звезды. Термоядерное пламя гаснет, «зола» медленно (очень медленно) остывает и перестает излучать свет.

Совершенно другая судьба ожидает звезды большей массы. В белом карлике силам гравитационного сжатия противостоит принцип запрета Паули, согласно которому количество электронов, которое может находиться в определенном пространственном объеме внутри погасшей звезды, строго ограничено. Это свойство материи называют давлением вырожденного электронного газа. В более массивных звездах эта сила не может противостоять огромному гравитационному давлению. В таком случае коллапс останавливается на стадии нейтронной звезды диаметром всего несколько километров, поддерживаемой в равновесном состоянии давлением уже не электронного, а вырожденного нейтронного газа‹‹9››. Для сравнения можно указать, что радиус Солнца равен 700 000 км, что примерно в 100 000 раз больше радиуса нейтронной звезды. Когда внешние слои умирающей звезды сжимаются под влиянием гравитации, возникающая гигантская температура и плотность материи дают энергию для последнего, всепоглощающего взрыва. В его пламени происходят реакции синтеза ядер тяжелых элементов вплоть до урана (а возможно, и больших), которые затем выбрасываются энергией взрыва в окружающий космос. Итак, вы только что наблюдали вспышку сверхновой!

Хоть в это трудно поверить, но сверхновые играют фундаментальную роль в истории зарождения жизни во Вселенной: они завершают ядерный синтез элементов периодической таблицы, а также служат механизмом их доставки, выбрасывая в окружающий космос богатое разнообразие новых элементов. Все атомы тяжелее водорода и гелия, которые необходимы для важнейших жизненных процессов (будь то атом железа в гемоглобине у нас в крови или атом магния в центре молекулы хлорофилла), ведут свою историю от термоядерной реакции в недрах звезд или от взрыва сверхновой.

<<< Назад
Вперед >>>

Генерация: 0.179. Запросов К БД/Cache: 0 / 0
Вверх Вниз