Книга: Краткая история времени. От Большого Взрыва до черных дыр
Глава пятая Элементарные частицы и силы в природе
<<< Назад Глава четвертая Принцип неопределенности |
Вперед >>> Глава шестая Черные дыры |
Глава пятая
Элементарные частицы и силы в природе
Аристотель считал, что вещество во Вселенной состоит из четырех основных элементов: земли, воздуха, огня и воды, на которые действуют две силы – сила тяжести, влекущая землю и воду вниз, и сила легкости, под действием которой огонь и воздух стремятся вверх. Такой подход к строению Вселенной, когда все делится на вещество и силы, сохраняется и по сей день.
По Аристотелю, вещество непрерывно, т. е. любой кусок вещества можно бесконечно дробить на всё меньшие и меньшие кусочки, так и не дойдя до такой крошечной крупинки, которая дальше бы уже не делилась. Однако некоторые другие греческие философы, например Демокрит, придерживались мнения, что материя по своей природе имеет зернистую структуру и все в мире состоит из большого числа разных атомов (греческое слово «атом» означает «неделимый»). Проходили века, но спор продолжался без всяких реальных доказательств, которые подтверждали бы правоту той или другой стороны. Наконец, в 1803 г. английский химик и физик Джон Дальтон показал, что тот факт, что химические вещества всегда соединяются в определенных пропорциях, можно объяснить, предположив, что атомы объединяются в группы, которые называются молекулами. Однако до начала XX века спор между двумя школами так и не был решен в пользу атомистов. В разрешение этого спора очень важный вклад внес Эйнштейн. В своей статье, написанной в 1905 г., за несколько недель до знаменитой работы о специальной теории относительности, Эйнштейн указал на то, что явление, носящее название броуновского движения, – нерегулярное, хаотическое движение мельчайших частичек, взвешенных в воде, – можно объяснить ударами атомов жидкости об эти частички.
К тому времени уже имелись некоторые основания подумывать о том, что и атомы тоже не неделимы. Несколькими годами раньше Дж. Дж. Томсон из Тринити-колледжа в Кембридже открыл новую частицу материи – электрон, масса которого меньше одной тысячной массы самого легкого атома. Экспериментальная установка Томсона немного напоминала современный телевизионный кинескоп. Раскаленная докрасна металлическая нить служила источником электронов. Поскольку электроны заряжены отрицательно, они ускорялись в электрическом поле и двигались в сторону экрана, покрытого слоем люминофора. Когда электроны падали на экран, на нем возникали вспышки света. Вскоре стало понятно, что эти электроны должны вылетать из атомов, и в 1911 г. английский физик Эрнст Резерфорд наконец доказал, что атомы вещества действительно обладают внутренней структурой: они состоят из крошечного положительно заряженного ядра и вращающихся вокруг него электронов. Резерфорд пришел к этому выводу, изучая, как отклоняются a-частицы (положительно заряженные частицы, испускаемые атомами радиоактивных веществ) при столкновении с атомами.
Вначале думали, что ядро атома состоит из электронов и положительно заряженных частиц, которые назвали протонами (от греческого слова «протос» – первичный), потому что протоны считались теми фундаментальными блоками, из которых состоит материя. Однако в 1932 г. Джеймс Чедвик, коллега Резерфорда по Кембриджскому университету, обнаружил, что в ядре имеются еще и другие частицы – нейтроны, масса которых почти равна массе протона, но которые не заряжены. За это открытие Чедвик был удостоен Нобелевской премии и выбран главой Конвилл-энд-Кайус-колледжа Кембриджского университета (колледж, в котором я сейчас работаю). Потом ему пришлось отказаться от этого поста из-за разногласий с сотрудниками. В колледже постоянно происходили ожесточенные споры, которые начались с тех пор, как после войны группа вернувшейся молодежи проголосовала против того, чтобы старые сотрудники оставались на своих должностях, которые они занимали уже много лет. Все это происходило еще до меня; я начал работать в колледже в 1965 г. и застал самый конец борьбы, когда другой глава колледжа, нобелевский лауреат Невилл Мотт, тоже вынужден был уйти в отставку.
Еще лет двадцать назад протоны и нейтроны считались «элементарными» частицами, но эксперименты по взаимодействию протонов и электронов, движущихся с большими скоростями, с протонами показали, что на самом деле протоны состоят из еще более мелких частиц. М. Гелл-Манн, теоретик из Калифорнийского технологического института, назвал эти частицы кварками[5]. В 1969 г. за исследование кварков Гелл-Манн был удостоен Нобелевской премии. Название «кварк» взято из заумной стихотворной строки Джеймса Джойса: «Три кварка для мастера Марка!» По идее, слово quark должно произноситься так же, как слово quart (куорт), в которой буква t на конце заменена буквой k, но обычно его произносят так, что оно рифмуется со словом lark.
Известно несколько разновидностей кварков: предполагают, что существует по крайней мере шесть «ароматов», которым отвечают u-кварк, d-кварк, странный кварк, очарованный кварк, b-кварк и t-кварк. Кварк каждого «аромата» может быть еще и трех «цветов»: красного, зеленого и синего. (Следует подчеркнуть, что это просто обозначения, так как размер кварков значительно меньше длины волны видимого света и поэтому цвета в обычном смысле слова у них нет. Дело просто в том, что современным физикам нравится придумывать названия новым частицам и явлениям, не ограничивая больше свою фантазию греческим алфавитом.) Протон и нейтрон состоят из трех кварков разных «цветов». В протоне содержится два u-кварка и один d-кварк, в нейтроне – два d-кварка и один u-кварк. Частицы можно строить и из других кварков (странного, очарованного, b и t), но все эти кварки обладают гораздо большей массой и очень быстро распадаются на протоны и нейтроны.
Мы уже знаем, что ни атомы, ни находящиеся внутри атома протоны с нейтронами не являются неделимыми, а потому возникает вопрос: что же такое настоящие элементарные частицы – те исходные кирпичи, из которых все состоит? Поскольку длины световых волн существенно больше размеров атома, у нас нет надежды «увидеть» составные части атома обычным способом. Для этой цели необходимы значительно меньшие длины волн. В предыдущей главе мы узнали, что, согласно квантовой механике, все частицы на самом деле являются еще и волнами и чем выше энергия частицы, тем меньше соответствующая длина волны. Таким образом, наш ответ на поставленный вопрос зависит от того, насколько высока энергия частиц, имеющихся в нашем распоряжении, потому что ею определяется, насколько мал масштаб тех длин, которые мы сможем наблюдать. Единицы, в которых обычно измеряется энергия частиц, называются электронвольтами. (Томсон в своих экспериментах для ускорения электронов использовал электрическое поле. Электронвольт – это энергия, которую приобретает электрон в электрическом поле величиной 1 вольт.) В XIX в., когда умели использовать только частицы с энергиями в несколько электронвольт, выделяющимися в химических реакциях типа горения, атомы считались самыми мелкими частями материи. В экспериментах Резерфорда энергии a-частиц составляли миллионы электронвольт. Затем мы научились с помощью электромагнитных полей разгонять частицы сначала до энергий в миллионы, а потом и в тысячи миллионов электронвольт. Так мы узнали, что частицы, которые двадцать лет назад считались элементарными, на самом деле состоят из меньших частиц. А что, если при переходе к еще более высоким энергиям окажется, что и эти меньшие частицы в свою очередь состоят из еще меньших? Конечно, это вполне вероятная ситуация, но у нас сейчас есть некоторые теоретические основания считать, что мы уже владеем или почти владеем сведениями об исходных «кирпичиках», из которых построено все в природе.
Все, что есть во Вселенной, в том числе свет и гравитацию, можно описывать, исходя из представления о частицах, с учетом частично-волнового дуализма, о котором мы говорили в предыдущей главе. Частицы же имеют некую вращательную характеристику – спин[6]. Представим себе частицы в виде маленьких волчков, вращающихся вокруг своей оси. Правда, такая картина может ввести в заблуждение, потому что в квантовой механике частицы не имеют вполне определенной оси вращения. На самом деле спин частицы дает нам сведения о том, как выглядит эта частица, если смотреть на нее с разных сторон. Частица со спином 0 похожа на точку: она выглядит со всех сторон одинаково (рис. 5.1, I). Частицу со спином 1 можно сравнить со стрелой: с разных сторон она выглядит по-разному (рис. 5.1, II) и принимает тот же вид лишь после полного оборота на 360°. Частицу со спином 2 можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется после полуоборота (180°). Аналогичным образом частица с более высоким спином возвращается в первоначальное состояние при повороте на еще меньшую часть полного оборота. Это все довольно очевидно, а удивительно другое: существуют частицы, которые после полного оборота не принимают прежний вид – их нужно полностью повернуть дважды! Говорят, что такие частицы обладают спином 1/2.
Все известные частицы во Вселенной можно разделить на две группы: частицы со спином 1/2, из которых состоит вещество во Вселенной, и частицы со спином 0, 1 и 2, которые, как мы увидим, создают силы, действующие между частицами вещества. Частицы вещества подчиняются так называемому принципу запрета Паули, открытому в 1925 г. австрийским физиком Вольфгангом Паули. В 1945 г. Паули за свое открытие был удостоен Нобелевской премии. Он являл собой идеальный пример физика-теоретика: говорят, что одно его присутствие в городе нарушало ход всех экспериментов! Принцип Паули гласит, что две одинаковые частицы не могут существовать в одном и том же состоянии, т. е. не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределенности. Принцип Паули имеет крайне важное значение, так как он позволил объяснить, почему под действием сил, создаваемых частицами со спином 0, 1, 2, частицы материи не коллапсируют в состояние с очень высокой плотностью: если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не смогут долго находиться в точках с этими координатами. Если бы в сотворении мира не участвовал принцип Паули, кварки не могли бы объединиться в отдельные, четко определенные частицы – протоны и нейтроны, которые в свою очередь не смогли бы, объединившись с электронами, образовать отдельные, четко определенные атомы. Без принципа Паули все эти частицы сколлапсировали бы и превратились в более или менее однородное и плотное «желе».
Правильное представление об электроне и других частицах со спином 1/2 отсутствовало до 1928 г., когда Поль Дирак предложил теорию для описания этих частиц. Впоследствии Дирак получил кафедру математики в Кембридже (которую в свое время занимал Ньютон и которую сейчас занимаю я). Теория Дирака была первой теорией такого рода, которая согласовалась и с квантовой механикой, и со специальной теорией относительности. В ней давалось математическое объяснение того, почему спин электрона равен 1/2, т. е. почему при однократном полном обороте электрона он не принимает прежний вид, а при двукратном принимает. Теория Дирака предсказывала также, что у электрона должен быть партнер – антиэлектрон или, иначе, позитрон. Открытие позитрона в 1932 г. подтвердило теорию Дирака, и в 1933 г. он получил Нобелевскую премию по физике. Сейчас мы знаем, что каждой частице соответствует античастица, с которой она может аннигилировать. (В случае частиц, обеспечивающих взаимодействие, частица и античастица – одно и то же.) Могли бы существовать целые антислова и антилюди, состоящие из античастиц. Но встретив антисебя, не вздумайте поздороваться с ним за руку! Возникнет ослепительная вспышка света, и вы оба исчезнете. Чрезвычайно важен вопрос, почему вокруг нас гораздо больше частиц, чем античастиц. Мы к нему еще вернемся в этой главе.
В квантовой механике предполагается, что все силы, или взаимодействия, между частицами вещества переносятся частицами с целочисленным спином, равным 0, 1 или 2. Частица вещества, например электрон или кварк, испускает частицу, которая является переносчиком взаимодействия. В результате отдачи скорость частицы вещества меняется. Затем частица-переносчик налетает на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как будто между этими двумя частицами вещества действует сила.
Частицы-переносчики взаимодействия обладают одним важным свойством: они не подчиняются принципу запрета Паули. Это означает отсутствие ограничений для числа обмениваемых частиц, так что возникающая сила взаимодействия может оказаться большой. Но если масса частиц-переносчиков велика, то на больших расстояниях их рождение и обмен будут затруднены. Таким образом, переносимые ими силы будут короткодействующими. Если же частицы-переносчики не будут обладать собственной массой, возникнут дальнодействующие силы. Частицы-переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что, в отличие от реальных, их нельзя непосредственно зарегистрировать при помощи детектора частиц. Однако мы знаем, что виртуальные частицы существуют, потому что они создают эффекты, поддающиеся измерению: благодаря виртуальным частицам возникают силы, действующие между частицами вещества. При некоторых условиях частицы со спинами 0, 1, 2 существуют и как реальные, тогда их можно непосредственно зарегистрировать. С точки зрения классической физики такие частицы встречаются нам в виде волн, скажем световых или гравитационных. Они иногда испускаются при взаимодействии частиц вещества, протекающем за счет обмена частицами-переносчиками взаимодействия. (Например, электрическая сила взаимного отталкивания между двумя электронами возникает за счет обмена виртуальными фотонами, которые нельзя непосредственно зарегистрировать. Но если электроны пролетают друг мимо друга, то возможно испускание реальных фотонов, которые будут зарегистрированы как световые волны.)
Частицы-переносчики можно разделить на четыре типа в зависимости от величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействовали. Подчеркнем, что такое разделение искусственно, – это схема, удобная для разработки частных теорий, ничего более серьезного в ней, вероятно, нет. Большинство физиков надеется, что в конце концов удастся создать единую теорию, в которой все четыре силы оказались бы разновидностями одной и той же силы. Многие даже видят в этом главную цель современной физики. Недавно увенчались успехом попытки объединения трех сил. В этой главе я еще собираюсь о них рассказать. О том, как обстоит дело с включением в такое объединение гравитации, мы поговорим немного позже.
Итак, первая разновидность сил – гравитационная сила. Гравитационные силы носят универсальный характер. Это означает, что всякая частица находится под действием гравитационной силы, величина которой зависит от массы или энергии частицы. Гравитация гораздо слабее каждой из оставшихся трех сил. Это очень слабая сила, которую мы вообще не заметили бы, если бы не два ее специфических свойства: гравитационные силы действуют на больших расстояниях и всегда являются силами притяжения. Следовательно, очень слабые гравитационные силы взаимодействия отдельных частиц в двух телах большого размера, таких, например, как Земля и Солнце, могут в сумме дать очень большую силу. Три остальных вида взаимодействия либо действуют только на малых расстояниях, либо являются то отталкивающими, то притягивающими, что приводит в общем к компенсации. В квантово-механическом подходе к гравитационному полю считается, что гравитационная сила, действующая между двумя частицами материи, переносится частицей со спином 2, которая называется гравитоном. Гравитон не обладает собственной массой, и поэтому переносимая им сила является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Земля и Солнце, обмениваются гравитонами. Несмотря на то что в обмене участвуют лишь виртуальные частицы, создаваемый ими эффект безусловно поддается измерению, потому что этот эффект – вращение Земли вокруг Солнца! Реальные гравитоны распространяются в виде волн, которые в классической физике называются гравитационными, но они очень слабые, и их так трудно зарегистрировать, что пока это никому не удалось сделать.
Следующий тип взаимодействия создается электромагнитными силами, которые действуют между электрически заряженными частицами, как, например, электроны и кварки, но не отвечают за взаимодействие таких незаряженных частиц, как гравитоны. Электромагнитные взаимодействия гораздо сильнее гравитационных: электромагнитная сила, действующая между двумя электронами, примерно в миллион миллионов миллионов миллионов миллионов миллионов миллионов (1 с сорока двумя нулями) раз больше гравитационной силы. Но существуют два вида электрического заряда – положительный и отрицательный. Между двумя положительными зарядами так же, как и между двумя отрицательными, действует сила отталкивания, а между положительным и отрицательным зарядами – сила притяжения. В больших телах, например в Земле или Солнце, содержание положительных и отрицательных зарядов почти одинаково, и, следовательно, силы притяжения и отталкивания почти компенсируют друг друга, и остается очень малая чисто электромагнитная сила. Однако в малых масштабах атомов и молекул электромагнитные силы доминируют. Под действием электромагнитного притяжения между отрицательно заряженными электронами и положительно заряженными протонами в ядре электроны в атоме вращаются вокруг ядра в точности так же, как под действием гравитационного притяжения Земля вращается вокруг Солнца. Электромагнитное притяжение описывается как результат обмена большим числом виртуальных безмассовых частиц со спином 1, которые называются фотонами. Как и в случае гравитонов, фотоны, осуществляющие обмен, являются виртуальными, но при переходе электрона с одной разрешенной орбиты на другую, расположенную ближе к ядру, освобождается энергия, и в результате испускается реальный фотон, который при подходящей длине волны можно наблюдать человеческим глазом как видимый свет, или же с помощью какого-нибудь детектора фотонов, например фотопленки. Аналогичным образом при соударении реального фотона с атомом может произойти переход электрона с одной орбиты на другую, более далекую от ядра. Этот переход происходит за счет энергии фотона, который поглощается атомом.
Взаимодействие третьего типа называется слабым взаимодействием. Оно отвечает за радиоактивность и существует между всеми частицами вещества со спином 1/2, но в нем не участвуют частицы со спином 0, 1, 2 – фотоны и гравитоны. До 1967 г. свойства слабых сил были плохо изучены, а в 1967 г. Абдус Салам, теоретик из Лондонского Империал-колледжа, и Стивен Вайнберг из Гарвардского университета одновременно предложили теорию, которая объединяла слабое взаимодействие с электромагнитным аналогично тому, как на сто лет раньше Максвелл объединил электричество и магнетизм. Вайнберг и Салам высказали предположение о том, что в дополнение к фотону существуют еще три частицы со спином 1, которые все вместе называются тяжелыми векторными бозонами и являются переносчиками слабого взаимодействия. Эти бозоны были обозначены символами W+, W– и Z0, масса каждого из них составляла 100 ГэВ (ГэВ означает гигаэлектронвольт, т. е. тысяча миллионов электронвольт). Теория Вайнберга – Салама обладает свойством так называемого спонтанного нарушения симметрии. Оно означает, что частицы, совершенно разные при низких энергиях, при высоких энергиях оказываются на самом деле одной и той же частицей, но находящейся в разных состояниях. Это в каком-то смысле похоже на поведение шарика при игре в рулетку. При всех высоких энергиях (т. е. при быстром вращении колеса) шарик ведет себя всегда почти одинаково – безостановочно вращается. Но когда колесо замедлится, энергия шарика уменьшается, и в конце концов он проваливается в одну из тридцати семи канавок, имеющихся на колесе. Иными словами, при низких энергиях шарик может существовать в тридцати семи состояниях. Если бы мы почему-либо могли наблюдать шарик только при низких энергиях, то считали бы, что существует тридцать семь разных типов шариков!
Теория Вайнберга – Салама предсказывала, что при энергиях, значительно превышающих 100 ГэВ, три новые частицы и фотон должны вести себя одинаково, а при более низких энергиях частиц, т. е. в большинстве обычных ситуаций, эта «симметрия» должна нарушаться. Массы W+-, W-– и Z0-бозонов предсказывались большими, чтобы создаваемые ими силы имели очень малый радиус действия. Когда Вайнберг и Салам выдвинули свою теорию, им мало кто верил, а на маломощных ускорителях тех времен невозможно было достичь энергии в 100 ГэВ, необходимой для рождения реальных W+-, W-– и Z0-частиц. Однако лет через десять остальные предсказания, полученные в этой теории при низких энергиях, настолько хорошо подтвердились экспериментально, что Вайнбергу и Саламу была присуждена Нобелевская премия 1979 г., совместно с Шелдоном Глэшоу (тоже из Гарварда), который предложил похожую единую теорию электромагнитных и слабых ядерных взаимодействий. Комитет по Нобелевским премиям был избавлен от неприятностей, которые могли бы возникнуть, если бы оказалось, что он совершил ошибку, сделанным в 1983 г. в ЦЕРНе открытием трех массивных партнеров фотона с правильными значениями массы и другими предсказанными характеристиками. Карло Руббиа, возглавивший группу из нескольких сотен физиков, которым принадлежало это открытие, получил Нобелевскую премию 1984 г., присужденную ему совместно с инженером ЦЕРНа Симоном Ван дер Меером, автором проекта накопителя античастиц, использованного в эксперименте. (В наше время чрезвычайно трудно оставить свой след в экспериментальной физике, разве что вы уже на вершине.)
Сильное ядерное взаимодействие представляет собой взаимодействие четвертого типа, которое удерживает кварки внутри протона и нейтрона, а протоны и нейтроны – внутри атомного ядра. Переносчиком сильного взаимодействия считается еще одна частица со спином 1, которая называется глюоном. Глюоны взаимодействуют только с кварками и с другими глюонами. У сильного взаимодействия есть одно необычайное свойство – оно обладает конфайнментом[7]. Конфайнмент состоит в том, что частицы всегда удерживаются в бесцветных комбинациях. Один кварк не может существовать сам по себе, потому что тогда он должен был бы иметь цвет (красный, зеленый или синий). Поэтому красный кварк должен быть соединен с зеленым и синим посредством глюонной «струны» (красный + зеленый + синий = белый). Такой триплет оказывается протоном или нейтроном. Существует и другая возможность, когда кварк и антикварк объединяются в пару (красный + антикрасный, или зеленый + антизеленый, или синий + антисиний = белый). Такие комбинации входят в состав частиц, называемых мезонами. Эти частицы нестабильны, потому что кварк и антикварк могут аннигилировать друг с другом, образуя электроны и другие частицы. Аналогичным образом, один глюон не может существовать сам по себе из-за конфайнмента, потому что глюоны тоже обладают цветом. Следовательно, глюоны должны группироваться таким образом, чтобы их цвета в сумме давали белый цвет. Описанная группа глюонов образует нестабильную частицу – глюбол.
Мы не можем наблюдать отдельный кварк или глюон из-за конфайнмента. Не означает ли это, что само представление о кварках и глюонах как о частицах несколько метафизично? Нет, потому что сильное взаимодействие характеризуется еще одним свойством, которое называется асимптотической свободой. Благодаря этому свойству понятие кварков и глюонов становится вполне определенным. При обычных энергиях сильное взаимодействие действительно является сильным и плотно прижимает кварки друг к другу. Но, как показывают эксперименты на мощных ускорителях, при высоких энергиях сильное взаимодействие заметно ослабевает и кварки и глюоны начинают вести себя почти как свободные частицы. На рис. 5.2 представлен фотоснимок столкновения протона и антипротона высокой энергии. Мы видим, что несколько почти свободных кварков, родившихся в результате взаимодействия, образовали «струи» треков, которые видны на фотографии.
Итогом успешного объединения электромагнитного и слабого взаимодействий стали попытки соединить эти два вида взаимодействий с сильным взаимодействием, чтобы в результате получилась так называемая теория великого объединения. В этом названии есть некоторое преувеличение: во-первых, теории великого объединения не такие уж великие, а во-вторых, они не объединяют полностью все взаимодействия, потому что в них не входит гравитация. Кроме того, все эти теории на самом деле неполны, потому что содержат параметры, которые нельзя предсказать теоретически и которые надо вычислять, сравнивая теоретические и экспериментальные результаты. Тем не менее такие теории могут стать шагом к полной теории объединения, охватывающей все взаимодействия. Основная идея построения теорий великого объединения состоит в следующем: как уже говорилось, сильные взаимодействия при высоких энергиях становятся слабее, чем при низких. В то же время электромагнитные и слабые силы асимптотически не свободны, и при высоких энергиях они растут. Тогда при каком-то очень большом значении энергии – при энергии великого объединения – эти три силы могли бы сравняться между собой и стать просто разновидностями одной и той же силы. Теории великого объединения предсказывают, что при этой энергии разные частицы вещества со спином 1/2, такие как кварки и электроны, тоже перестали бы различаться, что было бы еще одним шагом к объединению.
Значение энергии великого объединения не очень хорошо известно, но оно должно составлять по меньшей мере тысячу миллионов миллионов ГэВ. В ускорителях современного поколения сталкиваются частицы с энергиями около 100 ГэВ, а в будущих проектах эта величина должна возрасти до нескольких тысяч ГэВ. Но для ускорения частиц до энергии великого объединения нужен ускоритель размером с Солнечную систему. Маловероятно, чтобы в нынешней экономической ситуации кто-нибудь решился ее финансировать. Вот почему невозможна непосредственная экспериментальная проверка теорий великого объединения. Но здесь, как и в случае электрослабой единой теории, существуют низкоэнергетические следствия, которые можно проверить.
Самое интересное из таких следствий то, что протоны, составляющие бо?льшую часть массы обычного вещества, могут спонтанно распадаться на более легкие частицы, такие как антиэлектроны. Причина в том, что при энергии великого объединения нет существенной разницы между кварком и антиэлектроном. Три кварка внутри протона обычно не обладают достаточным количеством энергии для превращения в антиэлектроны, но один из кварков может совершенно случайно однажды получить энергию, достаточную для этого превращения, потому что в силу принципа неопределенности невозможно точно зафиксировать энергию кварков внутри протона. Тогда протон должен распасться, но вероятность того, что кварк будет иметь достаточную энергию, столь мала, что ждать этого придется по крайней мере миллион миллионов миллионов миллионов миллионов (1 с тридцатью нулями) лет, что гораздо больше времени, прошедшего с момента Большого Взрыва, которое не превышает десяти тысяч миллионов лет или что-то около того (1 с десятью нулями). Отсюда напрашивается вывод, что возможность спонтанного распада протона нельзя экспериментально проверить. Можно, однако, увеличить вероятность наблюдения распада протона, изучая очень большое число протонов. (Наблюдая, например, 1 с тридцатью одним нулем протонов в течение года, можно надеяться обнаружить, согласно одной из простейших теорий великого объединения, более одного распада протона.)
Несколько таких экспериментов уже выполнено, но они не дали определенных сведений о распадах протона или нейтрона. Один из экспериментов, в котором использовалось восемь тысяч тонн воды, проводился в соляной шахте штата Огайо (для того, чтобы исключить космические помехи, которые можно принять за распад протона). Поскольку в течение всего эксперимента не было зарегистрировано ни одного распада протона, можно вычислить, что время жизни протона должно быть больше, чем десять миллионов миллионов миллионов миллионов миллионов (1 с тридцатью одним нулем) лет. Этот результат превышает предсказания простейшей теории великого объединения, но есть и более сложные теории, дающие более высокую оценку. Для их проверки потребуются еще более точные эксперименты с еще большими количествами вещества.
Несмотря на трудности наблюдения распада протона, не исключено, что само наше существование есть следствие обратного процесса – образования протонов или, еще проще, кварков на самой начальной стадии, когда кварков было не больше, чем антикварков. Такая картина начала Вселенной представляется наиболее естественной. Земное вещество в основном состоит из протонов и нейтронов, которые в свою очередь состоят из кварков, но в нем нет ни антипротонов, ни антинейтронов, состоящих из антикварков, если не считать те несколько штук, которые были получены на больших ускорителях. Эксперименты с космическими лучами подтверждают, что то же самое справедливо и для всего вещества в нашей Галактике: в нем нет ни антипротонов, ни антинейтронов, за исключением того небольшого количества античастиц, которое возникает в результате рождения пар частица – античастица в соударениях частиц при высоких энергиях. Если бы в нашей Галактике были большие участки антивещества, то можно было бы ожидать сильного излучения на границах раздела вещества и антивещества, где возникало бы множество соударений частиц и античастиц, которые, аннигилируя, испускали бы излучение высокой энергии.
У нас нет прямых указаний на то, состоит ли вещество других галактик из протонов и нейтронов или из антипротонов и антинейтронов, но оно должно состоять из частиц одного типа: в пределах одной галактики не может быть смеси частиц и античастиц, потому что в результате их аннигиляции испускалось бы мощное излучение. Поэтому мы считаем, что все галактики состоят из кварков, а не из антикварков; вряд ли одни галактики состояли из вещества, а другие – из антивещества.
Но почему кварков должно быть настолько больше, чем антикварков? Почему число их не одинаково? Нам очень повезло, что это так, потому что если бы кварков и антикварков было поровну, то почти все кварки и антикварки проаннигилировали бы друг с другом в ранней Вселенной, наполнив ее излучением, но едва ли оставив хоть какое-нибудь вещество. Не было бы ни галактик, ни звезд, ни планет, на которых могла бы развиваться человеческая жизнь. С помощью теорий великого объединения можно объяснить, почему во Вселенной кварков должно быть сейчас больше, чем антикварков, даже в том случае, если в самом начале их было поровну. Как мы уже знаем, в теориях великого объединения при высоких энергиях кварки могут превращаться в антиэлектроны. Возможны и обратные процессы, когда антикварки превращаются в электроны, а электроны и антиэлектроны – в антикварки и кварки. Когда-то на очень ранней стадии развития Вселенной она была такой горячей, что энергии частиц было достаточно для подобных превращений. Но почему же в результате кварков стало больше, чем антикварков? Причина кроется в том, что законы физики не совсем одинаковы для частиц и античастиц.
До 1956 г. считалось, что законы физики инвариантны относительно трех преобразований симметрии – С, Р и Т. Симметрия С означает, что все законы одинаковы для частиц и античастиц. Симметрия Р означает, что законы физики одинаковы для любого явления и для его зеркального отражения (зеркальным отражением частицы, вращающейся по часовой стрелке, будет частица, вращающаяся против часовой стрелки). Наконец, смысл симметрии Т состоит в том, что при изменении направления движения всех частиц и античастиц на обратное система вернется в то состояние, в котором она находилась раньше; иными словами, законы одинаковы при движении во времени вперед или назад.
В 1956 г. два американских физика, Тзундао Ли и Чженьнин Янг, высказали предположение, что слабое взаимодействие на самом деле не инвариантно относительно Р-преобразований. Иными словами, в результате слабого взаимодействия развитие Вселенной может пойти иначе, чем развитие ее зеркального отражения. В том же году Цзиньсян Ву, коллега Ли и Янга, сумела доказать, что их предположение правильно. Расположив в магнитном поле ядра радиоактивных атомов так, чтобы их спины были направлены одинаково, она показала, что электронов вылетает больше в одном направлении, чем в другом. В следующем году Ли и Янг за свое открытие были удостоены Нобелевской премии. Оказалось, что слабые взаимодействия не подчиняются и симметрии С. Это означает, что Вселенная, состоящая из античастиц, будет вести себя иначе, чем наша Вселенная. Всем, однако, казалось, что слабое взаимодействие должно все-таки подчиняться комбинированной симметрии СР, т. е. развитие Вселенной должно происходить так же, как и развитие ее зеркального отражения, если, отразив ее в зеркале, мы к тому же каждую частицу заменим античастицей. Но в 1964 г. еще два американца, Джеймс Кронин и Вел Фитч, обнаружили, что в распаде частиц, которые называются К-мезонами, нарушается даже СР-симметрия. В результате в 1980 г. Кронин и Фитч получили за свою работу Нобелевскую премию. (Какое огромное количество премий присуждено за работы, в которых показано, что Вселенная не так проста, как нам кажется!)
Существует математическая теорема, в которой утверждается, что любая теория, подчиняющаяся квантовой механике и теории относительности, должна всегда быть инвариантна относительно комбинированной симметрии СРТ. Другими словами, поведение Вселенной не изменится, если заменить частицы античастицами, отразить все в зеркале и еще изменить направление времени на обратное. Но Кронин и Фитч показали, что если заменить частицы античастицами и произвести зеркальное отражение, но при этом не изменять направление времени на обратное, то Вселенная будет вести себя по-другому. Следовательно, при обращении времени законы физики должны измениться, т. е. они не инвариантны относительно симметрии Т.
Понятно, что в ранней Вселенной нарушалась симметрия Т: когда время течет вперед, Вселенная расширяется, а если бы время пошло назад, то Вселенная начала бы сжиматься. А поскольку существуют силы, не инвариантные относительно симметрии Т, то отсюда следует, что по мере расширения Вселенной под действием этих сил антиэлектроны должны превращаться в кварки чаще, чем электроны в антикварки. Затем, когда Вселенная расширялась и охлаждалась, антикварки и кварки должны были аннигилировать, но поскольку кварков оказалось бы больше, чем антикварков, кварки остались бы в небольшом избытке. И они-то и есть те самые кварки, из которых состоит сегодняшнее вещество, которое мы видим и из которого сотворены мы сами. Таким образом, само наше существование можно рассматривать как подтверждение теорий великого объединения, правда, только как качественное подтверждение. Неопределенности происходят из-за того, что мы не можем предсказать, ни сколько кварков останется после аннигиляции, ни даже будут ли оставшиеся частицы кварками или антикварками. (Правда, если бы в излишке остались антикварки, мы бы просто переименовали их в кварки, а кварки – в антикварки.)
Теории великого объединения не включают в себя гравитационное взаимодействие. Это не столь уж существенно, потому что гравитационные силы так малы, что их влиянием можно просто пренебречь, когда мы имеем дело с элементарными частицами или атомами. Однако тот факт, что гравитационные силы являются дальнодействующими, да еще и всегда силами притяжения, означает, что результаты их воздействия всегда суммируются. Следовательно, если имеется достаточное количество частиц вещества, то гравитационные силы могут стать больше всех остальных сил. Вот почему эволюция Вселенной определяется именно гравитацией. Даже в случае объектов размером со звезду гравитационное притяжение может перевесить все остальные силы и привести к коллапсу звезды. В 70-х годах я занимался исследованием черных дыр, которые могут возникнуть в результате такого звездного коллапса, и окружающих их сильных гравитационных полей. Именно в ходе этой работы у меня появились первые догадки о том, как квантовая механика и общая теория относительности могут влиять друг на друга – первые проблески формы той квантовой теории гравитации, которую еще предстоит разработать.
<<< Назад Глава четвертая Принцип неопределенности |
Вперед >>> Глава шестая Черные дыры |
- Благодарность
- Предисловие
- Глава первая Наше представление о Вселенной
- Глава вторая Пространство и время
- Глава третья Расширяющаяся Вселенная
- Глава четвертая Принцип неопределенности
- Глава пятая Элементарные частицы и силы в природе
- Глава шестая Черные дыры
- Глава седьмая Черные дыры не так уж черны
- Глава восьмая Рождение и гибель Вселенной
- Глава девятая Стрела времени
- Глава десятая Объединение физики
- Глава одиннадцатая Заключение
- Словарь терминов
- Сноски из книги
- Содержание книги
- Популярные страницы
- § 46 Ядерный распад и элементарные частицы
- Античастицы и антивещество.
- 248. Перемещаются ли вместе с волнами частицы воды?
- II. Как открывают субатомные частицы?
- IV. Каким образом частицы набирают весь свой вес? Золотой век кварков
- ГЛАВА 14. КАК РАСПОЗНАТЬ ЧАСТИЦЫ
- Бета-частицы оказались электронами
- Луна и элементарные частицы
- § 75 Наночастицы и перспективы нанотехнологий