Книга: Естествознание. Базовый уровень. 11 класс

§ 75 Наночастицы и перспективы нанотехнологий

<<< Назад
Вперед >>>

§ 75 Наночастицы и перспективы нанотехнологий

– Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал.

Н. С. Лесков. Левша

Нанотехнология – это относительно новая область теоретических и прикладных междисциплинарных исследований, объектом которой являются частицы, имеющие размеры от 1 до 100 нм. Это больше, чем размер атомов или неорганических молекул, но значительно меньше, чем размеры объектов, которыми принято оперировать в обычной технике (рис. 254). Такие частицы обладают целым рядом свойств, отличных как от свойств атомов и небольших молекул, так и от свойств крупных частиц.

Для практических целей важно, чтобы наночастицы располагались в строго определённом порядке и образовали структуру с требуемыми свойствами. Мы уже рассматривали естественные наноструктуры, когда говорили об устройстве живой клетки. Клетка состоит из огромного числа атомов и молекул, и при этом недостаточно, чтобы просто соблюдалось общее количество атомов и молекул каждого вида и пропорциональное соотношение между ними. Для того чтобы клетка могла жить, требуется, чтобы все атомы в молекулах были расположены с строго определённом порядке. Достаточно поменять местами несколько нуклеотидов в молекуле ДНК, и клетка окажется нежизнеспособной. А поскольку размеры крупных органических молекул в клетке как раз соответствуют размерам наночастиц, то процессы самоудвоения ДНК, синтеза белка и деления клетки, по сути, являются нанотехнологиями, осуществляемыми самой природой.

Другим рассмотренным нами примером нанотехнологии, но уже осуществляемой искусственно, является создание электронных интегральных микросхем, где расположенные в строгом порядке элементы имеют размеры порядка нескольких десятков нанометров, т. е. как раз представляют собой наночастицы.


Рис. 254. Размеры некоторых биологических объектов и молекул (логарифмический масштаб)

В настоящее время нанотехнология считается одним из самых перспективных направлений научно-технического развития человечества.


Рис. 255. Ричард Фейнман (1918–1988) – американский физик, лауреат Нобелевской премии по физике 1965 г.

История появления нанотехнологии

Впервые термин «нанотехнология» употребил в 1974 г. японский физик Норио Тани гути. Однако о возможности применения нанотехнологий заговорили гораздо раньше. В 1959 г. американский физик Ричард Фейнман (рис. 255) опубликовал работу, в которой оценил перспективы уменьшения размеров производимых вещей. Он научно обосновал, что с точки зрения фундаментальных законов природы нет препятствий для того, чтобы собирать предметы из отдельных атомов и использовать их, например, для записи информации. Лекция Фейнмана «Там, внизу, много места» («There’s Plenty of Room at the Bottom»), прочитанная им в Калифорнийском технологическом институте, стала легендарной. Вот отрывок из этого выступления: «По моим оценкам, в 24 миллионах книг размером с Британскую энциклопедию содержится 1015 бит информации. Думаю, что для хранения бита информации достаточно 100 атомов. Выходит, что вся собранная человечеством информация может храниться в кубе с гранями всего по полмиллиметра, т. е. в крохотной частичке пыли, едва различимой человеческим глазом. Так что внизу много места!»

Тогда многие восприняли его слова как фантастику. Ведь в то время ещё не существовало ни самих технологий, ни даже их проектов, позволяющих оперировать с отдельными атомами.

Главная проблема нанотехнологии заключается в том, чтобы найти способ заставить молекулы выстраиваться в определённом порядке, т. е. самоорганизовываться требуемым способом. Для решения этой проблемы был даже создан особый раздел химии – супрамолекулярная химия. Часто в нанотехнологии используют биологические крупные молекулы, по самой своей природе способные к самоорганизации. Известен, например, приём, используемый для соединения двух молекул в требуемый комплекс. Назовём эти молекулы А и В. Берётся молекула ДНК и разделяется на две взаимно комплементарные цепочки. К концу одной цепочки присоединяют молекулу А, а к другой – В. Затем оба компонента смешивают, комплементарные цепочки ДНК соединяются водородными связями, и в результате молекула А оказывается точно возле молекулы В. Между ними происходит взаимодействие, и образуется комплекс А. После этого молекулу ДНК можно удалить.

Уникальные свойства наноматериалов

Благодаря своим уникальным свойствам наноматериалы стремительно завоёвывают мир. Эти свойства в первую очередь обусловлены их нанометровыми размерами. В отличие от своих макро– и микроскопических собратьев, наночастицы свободны от механических дефектов, что позволяет использовать их, например, для хранения информации и нужд микроэлектроники. За счёт чрезвычайно малых размеров возможно производить суперминиатюрные устройства.

На поверхности наноструктур находится относительно большое количество атомов, т. е. у них очень большая относительная площадь поверхности. Это свойство важно, например, для каталитических процессов, в которых наноматериалы способны ускорять реакции в тысячи и даже миллионы раз.

Помимо этого наноматериалы проявляют необычные свойства, которые не могут быть описаны привычными для нас законами классической механики. В них начинают проявляться так называемые квантово-механические эффекты, что делает их весьма перспективными для использования в электронных и оптических устройствах, а также в биологических и медицинских исследованиях.

Достижения нанотехнологий

Многие нанотехнологии уже нашли практическое применение, а другие ещё находятся на стадии разработки. Одной из таких перспективных разработок является создание углеродных нанотрубок – цилиндрических структур из тонкого слоя графита особой структуры диаметром до нескольких десятков нанометров и длиной до нескольких сантиметров (рис. 256). Нанотрубки могут найти очень широкое применение – от создания новых типов транзисторов, дисплеев и фотодиодов до создания соединений между живыми нейронами и электронными устройствами в новейших нейрокомпьютерных разработках.

В 2010 г. Нобелевская премия по физике была присуждена двум русским учёным, работающим в Манчестерском университете, – Андрею Гейму и Константину Новосёлову. Премию они получили за то, что им удалось создать графен – плёнку, состоящую из обычного графита, который вставляют в карандаши, только эта плёнка имела толщину всего в один атом. Эта плёнка обладает настолько поразительными свойствами, что ещё недавно в возможность её существования никто не верил. Графен очень хорошо проводит электрический ток даже при комнатной температуре, что позволит заменить им кремний в полупроводниках и создавать на его основе сенсорные экраны, солнечные батареи, сотовые телефоны и сверхбыстрые компьютерные чипы.


Рис. 256. Нанотрубка


Рис. 257. Наноробот в кровеносном сосуде

Большой интерес в рамках нанотехнологий представляет создание нанороботов, разработка которых проводится в настоящее время (рис. 257). Это будут машины, сопоставимые по размерам с молекулами, которые будут способны двигаться, обрабатывать и передавать информацию, реализовывать заложенные в них программы, а возможно, и создавать себе подобные, т. е. самовоспроизводиться. Согласно другой точке зрения, нанороботы могут иметь и большие размеры – главное, чтобы они были способны манипулировать с объектами на наноуровне. Примитивные модели нанороботов существуют уже сейчас. Показано, что с их помощью можно управлять некоторыми химическими реакциями. Некоторые конструкторы нанороботов пытаются строить их на биологической основе, для чего используют фрагменты ДНК, называя свои создания ДНК-компьютерами.

Предполагают, что нанороботы могут найти применение в самых различных областях человеческой деятельности, особенно в медицине, где с их помощью можно будет диагностировать на ранней стадии многие заболевания (рак, диабет и др.), проводить хирургические микрооперации и осуществлять доставку лекарственных средств в нужные участки организма. Возможно, нанороботы смогут собирать различные системы из отдельных молекул.

Междисциплинарный характер нанотехнологии обеспечил ей распространение практически во всех отраслях науки и техники. В настоящее время технологические процессы производства интегральных микросхем уже осуществляются на нанометровом уровне в промышленных масштабах, и для дальнейшей миниатюризации преградой являются не технологические, а квантовые эффекты, проявляющие себя на микроуровне. Выпускаются фильтры, содержащие пористые наноматериалы. Они позволяют быстро и эффективно очищать воду не только от ионов, органических соединений, частиц грязи, но и от бактерий и даже вирусов. Появляются и первые медицинские препараты, позволяющие ускорять заживление ран и ожогов, а также эффективно убивать микробов. Наночастицы оксида титана и оксида цинка повсеместно стали использоваться в солнцезащитных кремах, поскольку именно они пропускают свет в видимом диапазоне и отсекают опасный для человека ультрафиолет.

В ближайшем будущем благодаря развитию нанотехнологии и биологии можно ожидать появления эффективных и безопасных лекарств, чувствительных датчиков, следящих за здоровьем человека, и, возможно, даже биокомпьютеров и биороботов.

Проверьте свои знания

1. Когда зародилась идея работы на наноуровне?

2. Каковы были предпосылки возникновения нанотехнологии?

3. Расскажите, чем занимается нанотехнология. Что такое нанометр?

4. Приведите примеры веществ и материалов, обладающих нанометровыми размерами.

5. Какими необычными свойствами обладают наноматериалы?

Задания

1. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию по одной из предложенных тем: «Бионаномашины и перспективы создания биокомпьютеров», «Наномедицина и её будущее», «Наноматериалы», «Нанотехнологии в медицине: новые подходы к доставке лекарств в организм», «Нанотехнология и экология: возможные опасности использования наноматериалов». Подготовьте и проведите конференцию по теме «Нанотехнологии и будущее человечества».

2. Подготовьтесь к дискуссии на тему «Военные приложения нанотехнологических разработок: за и против».

<<< Назад
Вперед >>>

Генерация: 0.259. Запросов К БД/Cache: 0 / 0
Вверх Вниз