Книга: Эволюция и прогресс
Глава 4. Ответ на отбор
<<< Назад Глава 3. Факторы микроэволюции |
Вперед >>> Макроэволюция |
Глава 4. Ответ на отбор
Лорд Сомервиль, упоминая о том, чего животноводы достигли по отношению к овце, говорит: «Кажется, будто они начертили на стене форму, совершенную во всех отношениях, и затем придали ей жизнь».
Обычно после прочтения книги Ч. Дарвина «Происхождение видов…» и даже после ознакомления с трудами крупнейших неодарвинистов от А. Вейсмана до Э. Майра у читателя остается впечатление, что отбор может все. Ограничения на его творческие возможности накладывают лишь разного рода экологические перипетии, но будь обстоятельства благоприятны, отбор за считанные миллионы лет мог бы в буквальном смысле создать из мухи слона.
Со времен Дарвина в качестве главного аргумента в пользу безграничных возможностей отбора выдвигаются успехи человека в создании хозяйственно ценных форм растений и животных. Особенно впечатляют результаты методической селекции последних двух столетий. Чаще всего такая селекция была направлена на повышение мощности вполне конкретной рабочей структуры. Чем не модель для изучения прогрессивной эволюции? Заметим, что скрещивая более и менее продвинутые на пути такого «прогресса» формы и следя за их потомством, можно было бы вскрыть генетическую подоплеку мощности рабочих структур. Итак, если мы действительно хотим проверить тезис о всесильности отбора и научиться измерять его творческие возможности, нам следует совершить небольшой экскурс в генетику количественных признаков.
Изменчивость особей
Вооружившись подходящим измерительным инструментом, мы можем убедиться, что взрослые особи любой природной популяции отличаются друг от друга по множеству характеристик (признаков): размерам тела и органов, частоте пульса, скорости бега, численности потомства и т. д. Попробуем найти способ, как оценить степень изменчивости популяции по таким мерным признакам.
Выберем наугад большое число особей (желательно одного возраста и пола) и измерим у них какую-нибудь характеристику. Ясно, что в любой выборке можно найти одну особь с наименьшей величиной признака и одну — с наибольшей. Разность между этими значениями — диапазон варьирования мерного признака — может служить грубой мерой его изменчивости в популяции. Разобьем диапазон варьирования на ряд равных по величине интервалов. Очевидно, что с помощью этой процедуры мы разделим свою выборку на классы, каждый из которых формируется особями со значением признака, не выходящим за пределы соответствующего интервала. Теперь всю эту совокупность особей можно охарактеризовать ее распределением по признаку, т. е. числом особей, входящих в каждый класс. Фактически мы задаем тем самым математическую функцию численности особей от величины измеряемого параметра.
Рис. 13. Распределение студентов Гарвардского университета по росту (no: [Castle, 1916]).
Эту функцию удобно воспринимать графически (рис. 13). На оси абсцисс откладываем классовые интервалы, а ордината отражает численность особей, «приписанных» к соответствующему интервалу.
К настоящему времени изучены распределения по всевозможным признакам у большого числа популяций разных видов. Оказалось, что их графики обычно представляют собой непрерывные (гладкие) кривые с одной вершиной. Признаки, имеющие такие гладкие одновершинные распределения, в генетике принято называть количественными. Нередко графики этих распределений имеют симметричную колоколообразную форму, напоминая в этом отношении нормальное, или гауссовское, распределение, давно известное в теории вероятностей.
Центральным объектом теории вероятностей является так называемая случайная величина, которая характеризуется своим распределением, т. е. вероятностью принимать значения в заданных интервалах. В этой области математики доказывается, что нормальное распределение возникает, когда случайная величина является суммой большого числа независимо варьирующих, но близких по величине слагаемых. Классический пример представляет собой распределение ошибок, изученное великим немецким математиком К. Гауссом.
Вся информация о конкретном нормальном распределении заключена в двух его параметрах — среднем значении и дисперсии. Их можно легко вычислить и для нашей выборки особей. Среднее значение <x> — это просто среднеарифметическая величина признака. Угловые скобки обозначают операцию усреднения. Итак,
где х1, х2…, хn — величина признака у первой, второй и т. д. особей; n — число особей в выборке.
Дисперсия распределения ?2 отражает изменчивость особей по величине признака и является, по определению, средним квадратом отклонения величины признака от его среднего значения:
При получении распределения особей по признаку мы разбиваем всю выборку на n классов, каждый из которых может быть охарактеризован численностью и средним значением признака. Для удобства сравнения разных распределений вместо численности класса лучше взять долю, которую составляют его особи в выборке. Таким образом, i-й класс можно охарактеризовать его долей (рi) в выборке и средним значением признака (хi). В этом случае среднее значение и дисперсия вычисляются по формулам
Компоненты дисперсии
Теперь попробуем разобраться в причинах изменчивости особей в природных популяциях. Практический опыт подсказывает, что это явление зависит от среды и от наследственности. То, что среда (в частности, качество питания) влияет на величину количественных признаков, знают все. Влияние наследственности также хорошо известно, достаточно напомнить поговорку: «Яблоко от яблони недалеко падает».
Действие на признак обоих факторов (среды и наследственности), по существу, независимо, что весьма упрощает проблему разложения наблюдаемой (фенотипической) изменчивости на компоненты, связанные с действием каждого фактора. В теории вероятностей доказывается, что дисперсия суммы независимо варьирующих случайных величин является суммой дисперсий каждой из них. Соответственно и фенотипическую дисперсию по величине любого признака (?2) можно разложить на два слагаемых, на две компоненты — средовую (?е2) и генотипическую (?g2) дисперсии:
В некоторых случаях фенотипическая дисперсия популяции равна средовой. Это происходит тогда, когда генотипы всех особей идентичны. Таковы популяции многих растений, размножающихся бесполым путем — корневищами, побегами и т. д. Среди животных (некоторых рачков, коловраток и даже ящериц) известны клоны партеногенетических самок — потомков одной особи основательницы. Наконец, генетики и селекционеры любят работать с так называемыми изогенными (чистыми) линиями. Особи этих линий (если пренебречь редкими мутациями) генетически идентичны. Тем не менее, как бы мы ни старались выровнять условия среды, нам не удастся добиться полной идентичности их фенотипа.
Дело в том, что онтогенез включает в себя массу многостадийных взаимодействующих между собой процессов, при этом каждая последующая стадия возникает как следствие вполне конкретной предыдущей. Несмотря на хорошую защищенность онтогенеза от внешних воздействий, факторы среды в какой-то мере способны воздействовать на течение любого частного процесса, что может сказаться на прохождении всех последующих стадий и привести к изменению величины любого из многих количественных признаков. Кроме того, протекание многих стадий определяется регуляторными молекулами, число которых относительно невелико, а поэтому подвержено флуктуациям статистического характера. Нельзя же допустить, чтобы все регуляторы были, в свою очередь, регулируемы. Следовательно, сама сложность онтогенеза предопределяет далеко не абсолютную воспроизводимость фенотипа взрослых особей. Традиционно фенотипическую изменчивость генетически идентичных особей называют средовой.
Итак, эффект среды на признак можно рассматривать как сумму большого числа легких толчков, направляющих его развитие с равной вероятностью как в сторону увеличения, так и в сторону уменьшения. В итоге в популяции формируется распределение по признаку, близкое к нормальному. Эти толчки не сдвигают среднего значения признака, которое олицетворяет собой «цель» развития признака, его генотипическое значение. Отсюда вытекает, что среднее значение количественного признака в группе изогенных особей можно рассматривать как его генотипическое значение, которое каждый организм как бы пытается реализовать в ходе своего развития. Тогда как величина средовой дисперсии олицетворяет собой уровень «шума среды», «мешающего» особи реализовать «цель» ее генотипа. Теперь попробуем оценить вклад в фенотипическую изменчивость наследственной компоненты.
Гибридологический анализ количественных признаков
Допустим, мы имеем дело с двумя изогенными линиями Р1и Р2, принадлежащими одному виду. Несмотря на одинаковые условия среды, их средние значения могут сильно различаться, особенно если линии выделены из географически удаленных популяций. Мы исходим из того, что число генов в геномах сравниваемых линий одинаково, поэтому наследственные различия между ними вызваны разным набором аллелей одних и тех же локусов. Представим себе чисто условно, что в генотипе линии Р1 (с маленьким значением признака) собраны «слабые» аллели, которые будем обозначать строчными буквами, а в генотипе линии Р2 (с большим значением признака) — «сильные» аллели, для их обозначения будем применять прописные буквы.
Пусть разница средних значений признака двух изогенных линий обусловлена отличием в силе аллелей только одного локуса. Тогда генотип линии Р1 обозначим аа, а генотип линии Р2 — АА. Примем еще одно упрощающее условие: пусть по степени доминирования оба аллеля (а и А) равны (h = 0,5). Теперь введем представление об эффекте аллельного замещения. Будем считать, что замещение одного слабого аллеля на сильный увеличивает генотипическое значение признака на ? единиц. Тогда замещение обоих слабых аллелей на сильные увеличит это значение на 2? единиц. Вспомним, что генотипическое значение признака равно его среднему значению у особей с одинаковым генотипом, т. е.
символ < > означает среднее значение признака в линии.
Проведя массовые скрещивания особей таких линий, получим популяцию гибридов F1:
Все особи популяции F1 имеют один и тот же генотип аА, поэтому изменчивость признака в данном случае обусловлена исключительно средой. Будем считать, что средовая дисперсия для всех популяций (F1, P1 и Р2) одинакова и равна ?e2. Среднее значение признака у особей F1 (обозначим его т) должно равняться генотипическому значению гетерозигот аА, т. е. оно должно на ? единиц превосходить среднее значение особей линии P1 и настолько же уступать среднему значению особей Р2. Иными словами, m попадает точно в середину интервала между средними значениями признака обеих родительских популяций. Тогда средние значения признака всех рассмотренных популяций можно представить как
<F1> = m; <Р1> = m — а; <Р2> = m + а. (4.7)
Итак, m, m — а и m + а — генотипические значения признака у особей с генетической конституцией аА, аа и АА соответственно.
Перейдем к популяции F2, возникшей или при самооплодотворении, или при панмиктическом скрещивании особей из F1:
Из этой схемы видно, что вся совокупность особей F2 разбивается на три генотипических класса; каждый из них можно охарактеризовать его долей в выборке и средним значением признака. Одна четверть особей имеет генотип аа, другая четверть — генотип АА и половина — генотип аА. Поскольку средние значения признака у особей с этими генотипами равны соответственно m — а, m + а и m, то по (4.3) и (4.4) легко рассчитать среднее значение (М) и дисперсию (?g2) для распределения особей по генотипическим классам:
Таким образом, популяция F2 обладает дисперсией (а2/2), обусловленной различием особей по генотипу. Кроме того, из-за «шума» среды популяция обладает и средовой дисперсией ?e2. Этот шум не сдвигает средних значений, поэтому <F2> = m. Эффекты среды и генотипа независимы, отсюда следует, что дисперсия по признаку в поколении F2 должна быть больше средовой на положительную величину а2/2, т. е.
Теперь попробуем рассмотреть более общий случай, когда особи двух изогенных линий различаются аллелями n несцепленных локусов. По-прежнему будем считать, что все слабые аллели собраны у линии P1, а все сильные — у линии Р2. Проведем их скрещивание:
При оценке среднего значения популяции F1 сделаем два предположения: во-первых, по степени доминирования все аллели равны и, во-вторых, замещение в каждом локусе одного слабого аллеля на сильный увеличивает генотипическое значение признака на одну и ту же величину а. Следовательно, разность средних значений родительских популяций должна быть равна 2na, а среднее значение признака в популяции F, (обозначим его <F1>) будет находиться в точке m, т. е. точно посередине между средними значениями родительских линий. Такая модель, где вклады всех аллелей в величину признака суммируются, получила название аддитивной. Главным основанием для ее применения является попадание среднего значения признака в популяциях F1 и F2 посередине между средними значениями родительских популяций. Итак, для случая n локусов
<F1> = m; <P1> = m — na; <Р2> = m + na. (4.11)
Так как генотип всех особей F1 одинаков, то изменчивость признака в этой популяции обусловлена только влиянием среды, и ее дисперсия равна ?e2.
Теперь перейдем к популяции F2, представляющей собой смесь огромного числа (3n) генотипов. Формулу генотипа каждой особи можно записать как ряд из n аллельных пар со случайной комбинацией сильных и слабых аллелей в каждой паре. Поскольку аллельный состав каждого локуса формируется независимо от остальных, то генотипическая дисперсия популяции F2 должна представлять собой сумму дисперсий, каждая из которых отражает варьирование у разных особей числа сильных аллелей в каком-то одном локусе. Напомним, что в данной, аддитивной, модели замещение в любом локусе слабого аллеля на сильный ведет к увеличению генотипического значения признака на одну и ту же величину а. Отсюда следует (см. (4.9)), что каждый из n локусов вносит в генотипическую дисперсию поколения F2 один и тот же вклад а2/2. Итак, величину фенотипической дисперсии ?2 в популяции F2 можно передать формулой
?2 = ?e2+ na2/2. (4.12)
Это равенство вместе с другим
<Р2> — <Р1> = 2na (4.13)
образует систему двух независимых уравнений, позволяющих определить величину п:
Хотя эта знаменитая формула Кастла — Райта верна лишь в рамках аддитивной модели, она дает возможность ориентировочно подойти к числу генетических факторов, ответственных за межлинейную разницу величины признака.
Что нам дал этот гибридологический экскурс? Очень много. Хотя природные популяции — это не поколение F2 но и здесь генотипическое значение признака можно считать суммой n независимо варьирующих слагаемых, где n — число локусов в генофонде популяции. Только в отличие от F2число аллелей каждого локуса в данном случае может быть больше двух, и в пары они соединяются не в отношении 1:2:1, а по закону Харди — Вайнберга. Хотя мы ничего не знаем ни об эффектах этих аллелей, ни о степени их доминирования, ясно одно: популяционная дисперсия признака должна расти с увеличением числа локусов, принимающих участие в его формировании.
Сигма
Очень часто в качестве меры фенотипической изменчивости используют квадратный корень из дисперсии — так называемое среднеквадратичное отклонение (?). Для экономии места будем именовать эту величину сигмой, по названию греческой буквы, обычно используемой для ее обозначения. Измеряемая в единицах величины самого признака, сигма очень удобна как масштаб для оценки отклонения величины признака от среднепопуляционного значения. Если признак имеет нормальное распределение, то доля особей с отклонением в пределах одной сигмы составляет 68 %, двух сигм — 95 и трех сигм — 99,7 %. В связи с этим полный размах изменчивости признака, распределенного по нормальному закону, попадает в интервал ±3? (закон трех сигм). В сигмах принято измерять разность средних значений сравниваемых распределений и, в частности, эффект аллельных замещений.
Как и дисперсия, сигма может служить мерой средовой изменчивости — шума среды. Мы видели, что формула Кастла — Райта позволяет приближенно оценить число локусов, ответственных за различие линий по величине количественного признака. Зная это число, можно определить и средний эффект замещений слабого аллеля на сильный. Очень часто эффект оказывается меньше величины средовой сигмы ?e. Это обстоятельство позволяет почувствовать основную трудность, с которой сталкивается исследователь генетических основ количественных признаков. Ведь если эффект аллельных замещений меньше шума среды, то по фенотипу особи определить ее генотип невозможно. Это же объясняет и гладкий характер распределений по количественным признакам. Шум среды как бы замазывает генотипические различия особей.
При анализе природных популяций широко используется еще одна мера — коэффициент изменчивости признака, т. е. отношение сигмы к среднему значению, выраженное в процентах. Наиболее поразительная черта этого коэффициента заключается в его стабильности при переходе от популяции к популяции в пределах одного вида и даже при сравнении популяций разных видов одного рода. Более того, коэффициент изменчивости самых разных признаков в популяциях эволюционно далеких видов также не слишком различается, несмотря на большие расхождения в величинах средних значений. Отсюда следует, что между сигмой и средним значением существует связь, близкая к прямой пропорциональности. Однако такой вывод в корне противоречит нашему исходному представлению о нормальном характере распределения особей по признаку.
Напомним, что нормальное распределение однозначно определяется двумя независимыми параметрами — средним значением и дисперсией. Иными словами, если признак распределен в каждой популяции по нормальному закону, то при переходе от одной популяции к другой сигма и среднее значение должны изменяться независимо. Выходит, что наша первоначальная интерпретация средового влияния как суммарного действия большого числа легких независимых толчков не совсем точна. Правда, уже со времен создателя биометрии Ф. Гальтона известно, что при измерении признака логарифмической шкалой связь между сигмой и средним значением зачастую теряется. Если обозначить сдвиг значения признака X, измеренного обычной (арифметической) шкалой, как ?Х, то отношение этого сдвига к величине признака (его относительный сдвиг) примерно равно изменению признака, измеренного в логарифмическом масштабе, поскольку
?X / X ? ?lnX. (4.15)
Распределение, которое становится нормальным после логарифмирования значения случайной величины, называется логарифмически-нормальным. Его характерной особенностью является линейная связь между сигмой и средним значением. Вообще говоря, логарифмически-нормальное распределение совсем не симметрично и обладает длинным «хвостом», плавно спускающимся в сторону увеличения признака. Однако так оно выглядит при большом размахе изменчивости признака в арифметической шкале (например, в 10 раз). Если же такой диапазон значительно скромнее (скажем, только в 1,5 раза), то распределение по признаку в обеих шкалах выглядит очень сходным, и даже в арифметической шкале не слишком отличается от нормального. Поэтому при анализе особей одной популяции, когда размах изменчивости невелик, логарифмически-нормальные распределения выглядят как нормальные.
Опыт биометрии свидетельствует, что наследование количественных признаков, измеренных с помощью логарифмической шкалы, часто удовлетворяет аддитивной модели. Это означает, что межлинейное различие по величине логарифма признака можно трактовать как сумму эффектов аллельных замещений по ряду локусов. Заметим, что логарифм числа представим в виде суммы близких по величине слагаемых, когда само это число является произведением близких по значению сомножителей. Выходит, что замещение слабого аллеля на сильный в локусе, ответственном за развитие количественного признака, ведет к увеличению его генотипического значения в какое-то число раз. Причем это число не слишком различается при аллельных замещениях в разных локусах.
Ответ на искусственный отбор
Сначала рассмотрим, что кроется под таким образным понятием, как давление искусственного отбора. Проще всего под ним понимать долю отбракованных особей (I), обычно измеряемую в процентах:
I = (N0 / N)100 %, (4.16)
где N — численность популяции до отбора; N0 — число отбракованных особей. Недостаток формулы (4.16) состоит в отсутствии какой-либо информации о признаке, по которому ведется отбор. Эту сторону работы селекционера передает так называемый селекционный дифференциал (S), который определяется как разница средних значений признака в исходной популяции (до браковки) (М) и у «счастливцев», отобранных для развода (Мс), т. е.
S = Mc — M. (4.16)
Аналогично можно ввести представление об ответе популяции на отбор (R) как о сдвиге среднего значения популяции за одно поколение отбора:
R = M'c — M, (4.18)
где M'c — среднее значение признака у потомков «счастливцев».
Большой экспериментальный материал свидетельствует, что ответ на отбор прямо пропорционален селекционному дифференциалу. Следовательно, чем сильнее давление отбора, тем больше величина ответа на него. Величина этого ответа — внутреннее (генетически обусловленное) свойство популяции. Его количественной мерой является наследуемость — коэффициент пропорциональности (h2), связывающий ответ на отбор с селекционным дифференциалом. Итак, при ответе конкретной популяции на отбор по конкретному количественному признаку выполняется равенство
R = h2S. (4.19)
Наследуемость разных признаков у особей одной популяции может существенно различаться. Кроме того, может различаться и наследуемость одного и того же признака в разных популяциях одного вида. Что же лежит в основе этого явления?
Пусть мы имеем дело с популяцией, состоящей из генетически идентичных особей. Многократно показано, что при любом давлении отбора среднее значение любого признака в следующем поколении практически не изменяется (h2 = 0). Впервые это было продемонстрировано в знаменитом эксперименте В. Иогансена на чистых линиях фасоли. Иными словами, наследуемость равна нулю, если равна нулю генетическая компонента изменчивости.
Представим на момент, что мы в состоянии по фенотипу особи опознать ее генотип. Если к тому же эти особи размножаются бесполым путем, то состав генотипов потомков будет совпадать с таковым у отобранной группы родителей. Следовательно, и средние значения признаков потомков будут совпадать с их средними значениями у родителей, тем самым величина ответа на отбор сравняется с селекционным дифференциалом. Очевидно, что в данном случае h2 = 1.
Обычно же ответ на отбор меньше селекционного дифференциала, так как часть особей попадает в отобранную группу совершенно случайно (вследствие счастливого стечения средовых факторов), поэтому особенность их фенотипа наследоваться не может. Ведь для того, чтобы потомки этих «баловней судьбы» (а не генотипа) попали в отбираемую группу, им снова должно повезти. Но случай на то и случай, чтобы не повторяться регулярно.
В генетике количественных признаков доказывается, что наследуемость равна доле генетической дисперсии в полной фенотипической дисперсии признака. Вспоминая, что эта последняя складывается из генетической и средовой компонент, сказанное можно передать формулой
Повторяя процедуру отбора, направленного на изменение величины признака, в течение большого числа поколений мы можем в конце концов добиться фиксации генотипов, включающих в себя только сильные или только слабые аллели (в зависимости от направления отбора). Ясно, что в таком случае весь запас генетической изменчивости будет исчерпан, и дальнейший ответ на отбор станет невозможным.
Теперь обратимся к эксперименту. Действительно, у животных через несколько поколений отбора ответ на него обычно прекращается, и среднее значение признака выходит на плато. Однако интерпретировать это явление не так просто.
Негативные эффекты искусственного отбора
Первый лабораторный эксперимент по отбору на изменение количественных признаков был проведен в начале XX века американским генетиком У. Кастлом. Он ставил перед собой цель — превратить пегих (пятнистых) крыс в одноцветных. В одном варианте отбор был направлен на увеличение площади белых пятен, в другом — в противоположном направлении. Примерно через 20 поколений Кастл был близок к цели, т. е. ему удалось получить почти белых и почти черных крыс, но опыт пришлось прекратить, так как животные захирели и перестали размножаться. Короче говоря, у крыс резко снизились основные показатели приспособленности.
В дальнейшем сходные результаты были получены на большом числе животных объектов — мышах, курах, золотых рыбках, мучных хрущаках и, конечно, на дрозофиле. Везде по мере сдвига самых разных количественных признаков в любом направлении наблюдалось снижение показателей приспособленности: прежде всего жизнеспособности и плодовитости. Популяции как бы сопротивлялись действию искусственного отбора.
Особенно много экспериментов проведено по увеличению числа щетинок на разных частях тела у дрозофилы. Пристрастие именно к этому объекту объясняется очень коротким жизненным циклом плодовой мушки и ее хорошей генетической изученностью. Пример такой селекции приведен на рис. 14. Величина признака сначала монотонно возрастает, затем (обычно после 15–20 поколений отбора) наступает застой, ответ на отбор прекращается, а жизнеспособность и плодовитость мух падают. Оказывается, если отбор прекратить, то основные показатели приспособленности довольно быстро восстанавливаются, однако обычно это сочетается с существенным снижением числа щетинок, т. е. за несколько поколений «отдыха» от отбора величина признака сдвигается назад в сторону его исходных значений. Если после периода «отдыха» отбор возобновить, то можно снова поднять признак на прежний уровень, иногда даже при более высоких значениях главных компонент приспособленности.
Для экспериментов по долговременному отбору на увеличение числа щетинок характерна поразительная невоспроизводимость динамики изменения признака. В то же время в этой картине при всем ее многообразии имеются некоторые общие моменты. Обычно все начинается с довольно быстрого ответа на отбор, потом скорость увеличения признака постепенно падает, и кривая отбора выходит на плато. В этом состоянии «застоя», несмотря на продолжающуюся селекцию, популяция может находиться неопределенно долго. Затем внезапно может наступить фаза быстрого ответа на отбор, и кривая выходит на новое, более высокое плато. Этап нового застоя через какое-то число поколений может опять смениться фазой внезапного ответа, потом снова наступает застой и т. д.
Рис. 14. Отбор на увеличение числа абдоминальных щетинок у дрозофилы Drosophila melanogaster (по: [Yoo, 1980]).
Вся эта феноменология выглядит весьма загадочно и до сих пор не получила удовлетворительного объяснения. Существует несколько гипотез. Самая простая из них связывает падение приспособленности с так называемой инбредной депрессией. Действительно, обычно численность лабораторных понуляций невелика и в каждом поколении большая их часть подвергается браковке. Поэтому с ходом отбора постепенно повышается степень родства особей, вступающих в скрещивание. А это означает прогрессивное возрастание степени гомозиготности генов, часть которых может быть представлена вредными рецессивными аллелями. Однако расчеты показывают, что инбредная депрессия повинна лишь в части негативных последствий селекции.
Вторая гипотеза, высказанная выдающимся американским генетиком и математиком С. Райтом, объясняет негативный эффект селекции нарушением взаимодействия генов, хорошо «подогнанных» друг к другу естественным отбором. В ходе искусственного отбора в генофонде популяции нарастает концентрация аллелей, которые сдвигают признак в направлении, нужном экспериментатору, но плохо «сочетаются» с аллелями других генов.
Третья гипотеза принадлежит знаменитому английскому генетику К. Мазеру. Он предположил, что степень развития признака определяется совокупным эффектом большого числа локусов, аллели которых могут сдвигать величину признака в любом направлении. По мнению Мазера, слабые и сильные аллели (по эффекту на признак) разбросаны вдоль хромосомы случайно, а между ними находятся гены, влияющие на приспособленность и которые также представлены своими сильными и слабыми аллелями.
При отборе, направленном на увеличение признака, сначала отбираются особи — носители хромосом с повышенным содержанием сильных аллелей. Затем в результате кроссоверной рекомбинации (т. е. обмена участками между гомологичными хромосомами) синтезируются хромосомы с еще большим числом сильных аллелей, однако новые (рекомбинантные) хромосомы могут нести увеличенное число аллелей, снижающих приспособленность. В итоге возникают генотипы, удовлетворяющие экспериментатора, но неудовлетворительные с точки зрения естественного отбора. Гипотеза неплохо объясняет длительные периоды «застоя» на кривых отбора как время ожидания синтеза рекомбинантных хромосом.
Четвертая группа гипотез объясняет картину отбора мутациями. В связи с этим мы должны сначала кратко ознакомиться с основными открытиями Мукаи. В начале 60-х годов этот японский генетик приступил к серии экспериментов, продолжающихся и по сей день. На начальном этапе своих исследований Мукаи попытался оценить интенсивность и характер мутационного давления на гены, ответственные за жизнеспособность мух в лабораторных условиях.
Для этого была заложена серия линий, причем геном каждой из них содержал копию одного вполне конкретного варианта второй хромосомы. В каждом поколении из хромосомного фонда линии случайно извлекался один экземпляр второй хромосомы и размножался. Заметим, что выбираемая хромосома передавалась от поколения к поколению без оценки ее влияния на приспособленность, т. е. без отбора. Кроме того, генетическая схема опыта позволяла на любом поколении сопоставить жизнеспособность мух, гомо- и гетерозиготных по данной хромосоме. У гомозигот оба экземпляра второй хромосомы были идентичными, тогда как у гетерозигот они происходили из разных линий.
В начале опыта гомозиготы и гетерозиготы практически не различались по жизнеспособности, а затем во всех линиях начинался процесс постепенного «хирения» гомозигот, что можно объяснить накоплением второй хромосомой спонтанных мутаций с вредящим эффектом. Естественно, этот процесс шел во всех линиях совершенно независимо. Иногда случайно извлеченная хромосома счастливо избегала мутационных повреждений, в других случаях ей «везло» меньше. В некоторых случаях такая хромосома несла леталь, эти линии учитывались отдельно.
Усреднив полученные данные по всем линиям (свободным от леталей), можно было наблюдать, как падает жизнеспособность у гомозигот по хромосоме, фактически выведенной из-под контроля очищающего отбора. К 60-му поколению она снизилась примерно в 2 раза. Мукаи установил, что это вызвано накоплением полудоминантных мутаций, каждая из которых снижает жизнеспособность мух всего на 2–4 %. Скорость их появления составляет 0,4 мутации на геном гаметы за генерацию. Такие мутации возникают в геноме в 20–30 раз чаще рецессивных с сильным повреждающим эффектом (леталей и полулеталей).
Вернемся к искусственному отбору. В его ходе некоторый признак, обычно второстепенный для выживания (по крайней мере в лабораторных условиях) становится главным при разрешении вопроса жизни или смерти особи. Цель селекционера — сдвинуть в определенном направлении ценный, с его точки зрения, признак. Стремясь к этой цели, человек совершенно бессознательно способствует фиксации аллелей, благоприятствующих тому или иному уровню развития признака. Но локусы находятся в хромосомах, поэтому фиксация определенных аллелей — это фиксация довольно протяженных сегментов совершенно конкретных вариантов хромосом. Поддерживая в популяции высокий уровень благоприятных аллелей, селекционер фактически выводит из-под контроля естественного отбора сцепленные с ними хромосомные сегменты. Поэтому в них могут беспрепятственно накапливаться мутации, снижающие жизнеспособность и плодовитость. В природной обстановке очищающий отбор удалял бы эти мутации, но находящиеся рядом ценные для человека аллели их сохраняют. Поэтому, несмотря на прогрессивный однонаправленный сдвиг признака, в популяции наблюдается снижение главных показателей приспособленности. Возникает стандартная ситуация — цели человека входят в противоречие с естественным порядком вещей. В этих условиях определенную «помощь» популяции может принести кроссоверная рекомбинация, способная отделить аллели, ценные с точки зрения человека, от аллелей, вредных с точки зрения естественного отбора.
Анализ генофонда популяций в ходе длительной лабораторной селекции показывает, что в нем действительно накапливаются мутации, снижающие главные компоненты приспособленности. В то же время, в процессе селекции появляются и благоприятные мутации, которые и позволяют в конечном счете преодолеть негативные эффекты отбора.
Доместикация
К настоящему времени накоплен довольно обширный материал (исторический и археологический), который позволяет проследить за изменением строения животных и растений при их доместикаций и в ходе дальнейшей культурной эволюции. Лучше всего этот материал освещает процесс доместикации в одном из ее главных очагов — регионе, история которого обычно излагается в разделе «Древний Восток». Этот географический район включает в себя обширную зону, в виде полумесяца охватившую восточную часть Средиземного моря, и две примыкающие к ней полосы. Одна — более широкая — протянулась от истоков Тигра и Евфрата вдоль западных склонов гор Загроса до Персидского залива, другая, узкая, вдоль Нила.
На территории Древнего Востока примерно 9 тысяч лет назад произошло величайшее в истории человечества событие — переход от присваивающего хозяйства к производящему. Именно здесь человек одомашнил несколько видов животных и растений, которые и по сей день являются основными источниками его пищи.
Не следует полагать, что человек сразу же после одомашнивания животных приступил к отбору на улучшение их хозяйственно ценных признаков. Все было гораздо прозаичнее — в течение 3–4 тысяч лет животных скорее всего съедали без всякой браковки. Такое положение вещей, вероятно, сохранялось примерно до момента возникновения первых цивилизаций в Междуречье и долине Нила. Обширные храмовые и царские хозяйства создали основу для возникновения отраслей экономики, ориентированных на производство мяса, молока, шерсти. С данного момента можно говорить о начале сознательной селекции, которая привела к созданию первых пород домашних животных. Переход к этой стадии сопровождался существенными изменениями морфологии, что запечатлено древними художниками Шумера и Египта. Можно проследить, как бараны теряют свою роскошную гриву и винтообразные рога, а их уши повисают. Любопытно, что примерно в это же время повисают уши и у коз, а у собак, быков и мелкого рогатого скота появляются пегости. Несколько позже громадные рога быков заменяются рожками шортгорнов. Все эти события датируются примерно вторым тысячелетием до нашей эры.
Странный параллелизм в появлении признаков, отметаемых в природной обстановке очищающим отбором, можно приписать негативному эффекту искусственного отбора. Выше мы отмечали, что этот эффект можно в какой-то степени уменьшить синтезом новых, рекомбинантных хромосом, соединяющих аллели, полезные для человека, с аллелями, повышающими уровень главных компонент приспособленности. В таком случае искусственный отбор мог бы привести к повышению вероятности кроссоверного обмена и к более равномерному распределению этой вероятности вдоль хромосом. Недавно обнаружено, что уровень кроссоверной рекомбинации у домашних животных действительно гораздо выше, чем у диких.
История домашних животных демонстрирует не только мощь искусственного отбора, но не в меньшей мере и процесс деградации структур, функция которых в новых условиях оказалась избыточной. Домашние животные сами не заняты поиском пастбищ и защищены человеком от хищников. Следовательно, по сравнению с дикими предками их существование в меньшей степени зависит от скорости и глубины обработки внешних сигналов. Все это означает снижение давления очищающего отбора, следящего за работой органов чувств и центральной нервной системы. В итоге у всех домашних животных по сравнению с их дикими сородичами зарегистрировано уменьшение объема головного мозга на 15–30 %. У многих видов уменьшен диаметр глазниц. Как правило, абсолютные размеры животных также снижены. Степень деградации соматических структур у крупного рогатого скота и лошадей достигла максимума в Центральной Европе к концу средних веков. Современные высокопродуктивные породы получены на основе фактически карликовых форм, оставшихся от средневековья.
Исключение составляют скаковые лошади и некоторые породы собак, при выведении которых человек вел отбор на максимальную скорость бега. В этом случае цели человека не слишком расходились с обычными «целями» естественного отбора. В итоге деградация лошадей (прежде всего, уменьшение их размеров) связана обратной зависимостью с уровнем развития государства и его военных институтов. В частности, с падением Рима начался процесс резкого измельчания лошадей.
Попробуем просуммировать некоторые особенности, отличающие домашних млекопитающих от их диких предков. Они включают в себя изменение характера окраски шкуры (прежде всего многочисленные пегости); потерю или редукцию рогов; уменьшение числа хвостовых позвонков; уменьшение размеров тела и уменьшение величины головного мозга и органов, связанных с восприятием внешних сигналов; вислоухость (т. е. неспособность двигать ушами). Все эти изменения свидетельствуют о деградации функций, повышающих выживание в естественной (дикой) обстановке. Пожалуй, только функция размножения была усилена в ходе доместикации, что и не удивительно, так как, стремясь увеличить продуктивность животных, человек автоматически отбирал особей, приносящих наибольшее число потомков.
Итак, сходный (конвергентный) характер морфологических изменений при доместикации эволюционно неродственных видов скорее всего обусловлен снижением давления очищающего отбора, чему в немалой степени мог способствовать и интенсивный искусственный отбор, направленный на улучшение хозяйственно ценных признаков. Однако существует еще одно объяснение этой конвергенции. Советский генетик Д.К. Беляев предположил, что главная роль в процессе одомашнивания принадлежит отбору животных на ручной (неагрессивный) тип поведения. В ходе долговременного отбора на ручной тип поведения у серебристо-черных лисиц Д.К. Беляев с сотрудниками обнаружили немало наследуемых морфологических отклонений, вполне типичных для процесса одомашнивания.
По мнению ученого, главная особенность отбора на поведение состоит в том, что он ведет к изменению гормонального статуса животных, а это, в свою очередь, может явиться причиной глубокой и направленной реорганизации онтогенеза. Постулируется, что изменение уровня гормонов может привести к наследуемому изменению активности ряда генов. Набор этих генов не вполне случайный, что и объясняет параллелизм в появлении аномальных форм у разных видов в процессе доместикации. Заметим, однако, что данная концепция оставляет без ответа многие вопросы. Получается, что сдвиг гормонального статуса взрослого организма может вызвать направленное изменение активности вполне определенных генов в клетках зародышевого пути, причем это измененное состояние генов способно сохраняться у потомков. Тем самым фактически предполагается превращение средовой (модификационной) изменчивости в наследственную.
Отбор и интеграция процесса развития
В ходе искусственного отбора происходит глубокая перестройка генофонда популяции, поэтому не следует думать, что из всех предложенных объяснений сопротивления популяции отбору верно только одно. Хотя мы и далеки от мысли, что все существующее разумно, но если природная популяция не гибнет в течение тысяч поколений, то, по-видимому, организация ее генофонда не так уж далека от оптимальной.
Популяция не в силах полностью оградить себя от таких факторов, как мутационное давление, генный дрейф или генный поток, поэтому она всегда отягощена различными формами генетического груза. В то же время постоянное действие естественного отбора направлено на сохранение максимального в данных условиях уровня приспособленности. Для достижения этой цели популяция использует все доступные ей средства: от изменения способа размножения и уровня кроссоверной рекомбинации до изменения схемы индивидуального развития.
Выше мы только вскользь упомянули о гипотезе С. Райта, которая объясняет сопротивление популяции действию отбора тонкой «подогнанностью» друг к другу аллелей разных локусов. Такая взаимозависимость эффектов генов скорее всего должна проявляться в процессе индивидуального развития организма.
Рассмотрим абстрактную схему формирования взрослых структур А — F (рис. 15). За каждой из них стоит ряд зародышевых структур, нередко взаимодействующих друг с другом. На схеме эти зачатки условно разделены на два класса: поздние М — Р и ранние W— Y. Формально зиготу тоже можно считать зачатком (Z), общим для всех взрослых и эмбриональных структур организма. Каждая сплошная стрелка на схеме олицетворяет собой все многообразие генов, ответственных за развитие более раннего зачатка в более поздний. Эти гены можно символизировать сочетанием двух прописных букв — первая относится к более раннему зачатку, вторая — к более позднему. Взаимодействия типа эмбриональной индукции обозначены на схеме горизонтальными пунктирными линиями.
Представим себе, что селекционер стремится изменить вполне конкретную взрослую структуру. Ясно, что для этого он должен в каких-то генах, скрытых за стрелками, ведущими к данной структуре, зафиксировать новые (благоприятные с точки зрения селекционера) аллели. Из рис. 15 видно, что для изменения структуры А можно замещать аллели в генах ZW, WM и МА.
Рис. 15. Схема индивидуального развития структур организма.
Z — зигота; W—Y — ранние зачатки; M — R — поздние зачатки; А — F — взрослые структуры. Штриховой линией отмечена эмбриональная индукция.
Обратим внимание на путь формирования структуры В. Отметим, что из позднего зачатка N кроме нее возникает еще одна взрослая структура С. Если эта последняя прямо связана с основными показателями приспособленности, то ее развитие должно быть оптимизировано естественным отбором. Для изменения структуры В можно замещать аллели в любых локусах, стоящих за стрелками, ведущими к ней. Однако такие замещения в ранних генах кроме изменения структуры В могут затронуть еще одну структуру — С, а это уже может снизить уровень главных показателей приспособленности. Чтобы скомпенсировать данный негативный эффект, следовало бы структуре С возвратить ее прежнее значение, зафиксировав для этого новый аллель по одному из поздних локусов NC, т. е. в данном случае для адаптивного сдвига нужно зафиксировать два новых аллеля.
Обобщая этот пример, можно показать, что чем больше нитей связывает развитие какой-то структуры с другими, тем больше новых аллелей нужно зафиксировать для достижения одного и того же сдвига структуры у взрослой особи. Выходит, что отбор в основном должен оперировать с генами, которые управляют завершающими стадиями развития организма, тогда как гены, контролирующие ранние стадии, фактически не допускают изменений. Это хорошо объясняет сохранение основного плана строения животного в ходе эволюции. В то же время, чем раньше обособляется зачаток, тем выше шансы на эволюционный сдвиг у развивающейся из этого зачатка структуры.
Любопытно, что у растений негативные эффекты искусственного отбора выражены гораздо меньше, чем у животных. Особенно впечатляюще выглядят результаты знаменитого Иллинойсского эксперимента. Группа американских селекционеров в самом конце XIX века приступила к отбору, направленному на изменение ряда количественных признаков у кукурузы. Этот опыт продолжается до сих пор. На рис. 16 показано, как изменялось в ходе 76 поколений отбора содержание масла в семенах. Как видно, ответ на отбор может сохраняться в течение весьма продолжительного периода.
Рис. 16. Отбор на изменение содержания масла в семенах кукурузы (по: [Dudley, 1977]).
Эту особенность растений можно объяснить с двух позиций. Во-первых, в отличие от животных в жизненном цикле растений есть стадия гаплоидного организма — гаметофита. Всем известная цветочная пыльца является скоплением мужских гаметофитов. Биомасса пыльцевого зерна — продукт деятельности гаплоидного генома одного ядра. Этот же геном обеспечивает превращение пыльцевого зерна в трубку, прорастающую сквозь пестик до завязи. По этой трубке в зародышевый мешок доставляются мужские гаметы. Избыток пыльцевых зерен создает условия для соревнования гаметофитов по оплодотворяющей способности, т. е. на стадии мужского гаметофита идет как бы проверка большого числа генов на качество их работы. Это можно рассматривать как приспособление для снижения мутационного генетического груза.
Не исключено, что еще одной причиной слабого сопротивления растений давлению отбора является довольно низкая степень интеграции их индивидуального развития. Об этом может свидетельствовать, например, отсутствие каких-либо нарушений в развитии гибридов, полученных при соединении весьма отдаленных геномов. Хорошо известна мощность и высокая фертильность амфидиплоидов, у которых совмещены геномы растений, принадлежащих разным родам. Достаточно вспомнить о мягкой пшенице, совмещающей геномы твердой пшеницы и эгилопса, или об искусственно полученном пшенично-ржаном гибриде — тритикале.
Ограничения на скорость эволюции
Поставим в центр нашего рассмотрения вид — главное действующее лицо в макроэволюционной драме. Его жизнь протекает в очень сложной экологической обстановке.
Образно говоря, ему постоянно приходится заботиться о двух вещах: о возобновлении пищевых ресурсов и о защите своих особей от истребления. Пищевые и прочие ресурсы вид, как правило, делит с другими видами-конкурентами, а жизни его особей угрожают многочисленные хищники. К тому же пищей для рассматриваемого вида обычно служат живые организмы, все время пытающиеся поднять свою приспособленность, вырабатывая какие-то специальные средства защиты и сокращая тем самым ресурсы вида. Наконец, над всей этой борьбой стоят геологические и географические факторы. Изолирующие барьеры возникают и исчезают, климат меняется, происходят засоление и опреснение водоемов и т. д. Все это ухудшает условия жизни вида. Собственно говоря, возникает естественный вопрос, как вообще можно существовать в таких экстремальных условиях, да еще на протяжении миллионов лет. Этот вопрос несколько сродни другому: как каждый отдельный человек умудряется дожить до седин, если, оглядываясь на прожитую жизнь, он может насчитать до десятка случаев, когда был на волосок от смерти. Тем не менее довольно высокая средняя продолжительность жизни явно свидетельствует о том, что риск погибнуть во цвете лет не так уж велик. Жизнь вида представляется нам такой ненадежной потому, что мы несколько сгустили краски, просуммировав все факторы опасности.
Реальная ситуация обычно не так уж страшна, так как давление неблагоприятных факторов и главное скорость нарастания этого давления не слишком велики. Наконец, вид, разобщенный сложной географической средой на огромное число изолированных популяций, не может быть всюду застигнут врасплох действием неблагоприятного фактора. Какая-то его часть может спастись и после разрушения изолирующих барьеров занять свой прежний ареал. Правда, такой способ выживания эволюцией (тем более прогрессивной) не назовешь, но в эффективности ему не откажешь.
Теперь представим себе ситуацию, когда виду, образно выражаясь, отступать некуда, поскольку он представлен только одной компактной популяцией, и на него надвигается неблагоприятный фактор: вид-конкурент или вид-хищник, или просто ухудшается климат. В данной ситуации выживание вида определяется исключительно скоростью преобразования его наследственной информации. Старых «знаний» о среде ему теперь недостаточно, их необходимо подновить. На языке популяционной генетики такое подновление означает замещение аллелей в нескольких генных локусах. Хорошо, если эти аллели в генетическом фонде вида уже имеются, притом в приличных концентрациях.
В популяциях, насчитывающих миллион особей и больше, величина 2NV обычно превосходит единицу, т. е. благоприятные аллели имеются всегда, хотя их частоты должны быть очень низки (см. уравнение (3.31)). Естественный отбор в этих условиях мало эффективен, поэтому, несмотря на повторное появление, большинство благоприятных мутаций популяция должна терять. При наличии изолирующих барьеров большое значение приобретает генный дрейф, который может в некоторых субпопуляциях быстро поднять частоту благоприятного аллеля и сделать это совершенно «бесплатно», т. е. без селективной гибели менее приспособленных. Правда, вероятность такого везения невелика, но, скорее всего, оно является необходимым условием для начала действия движущего отбора — по существу, единственного фактора, способного быстро завершить фиксацию благоприятного аллеля.
Однако прямое воздействие отбора не может сдвинуть значение количественного признака на любой наперед заданный процент. В этом отношении материал организмов напоминает по своим свойствам совсем не пластилин, а твердое на ощупь аморфное тело, наподобие стекла. Такие тела, с точки зрения физика, являются жидкостями с очень большим коэффициентом вязкости, поэтому под влияниям внешнего воздействия они могут течь, т. е. изменять свою форму в любом направлении. В отличие от них настоящие твердые тела сопротивляются попыткам изменить их форму. У обычных жидкостей, вроде воды, такое сопротивление практически отсутствует, поскольку они способны чрезвычайно быстро (за 10-12—10-10 секунд) перестроить под влиянием внешнего воздействия свою молекулярную структуру. У очень вязких жидкостей время, необходимое для такой перестройки, на много порядков больше. По отношению к быстро меняющимся воздействиям очень вязкие жидкости ведут себя как хрупкие тела, ломаясь даже при небольших деформациях.
Чтобы заставить аморфные тела течь, нужно прикладывать к ним не очень большие, но весьма длительные нагрузки. Время воздействия на такую «твердую» жидкость должно быть тем больше, чем выше коэффициент ее вязкости. В случае изменения морфологии под действием отбора роль этого коэффициента выполняют прежде всего межгенные взаимодействия, контролирующие индивидуальное развитие организма. Если давление отбора слишком велико, то система межгенных взаимодействий не успевает перестроиться, и популяция вымирает.
При полной (абсолютной) интеграции онтогенеза все мутации стали бы неблагоприятными, так как любая из них сказалась бы отрицательно на большинстве основных функций организма. В связи с этим легкость перестройки генетической программы развития определяется не столько мутабильностью генов, сколько уровнем разобщенности (автономности) процессов развития зачатков рабочих структур, обслуживающих основные функции. Прекрасным примером такой автономности служит очень раннее обособление у животных зародышевого пути, ведущего к созданию главных структур функции воспроизведения, — гамет.
Мы видим, что степень разобщенности путей развития рабочих структур может сказаться на скорости фиксации благоприятных мутаций, т. е. на степени эволюционной пластичности видов. Следовательно, эта пластичность в определенной мере может зависеть от информационного содержания генома и, в частности, от генетического контроля процессов индивидуального развития.
Другое ограничение на скорость адаптивной эволюции связано с мутационным грузом. Интенсивный движущий отбор, быстро фиксируя благоприятные мутации, фиксирует и сегменты хромосом, в которых эти мутации расположены. Тем самым значительная часть генома выходит из-под контроля очищающего отбора, что ведет к быстрой аккумуляции в ней слегка вредящих мутаций. Очевидно, что ответ на отбор прекратится, когда позитивный эффект благоприятных мутаций уравновесится негативным эффектом вредящих. В связи с этим скорость эволюции попадает в зависимость от скорости освобождения хромосом от мутаций с отрицательным эффектом на главные показатели приспособленности.
Наконец, очевидно, что скорость фиксации благоприятных мутаций лимитируется скоростью их появления. Последняя же в соответствии с (3.32) определяется «выходом» таких мутаций, т. е. их долей среди всех мутаций, возникающих в эволюционирующей популяции за одно поколение.
<<< Назад Глава 3. Факторы микроэволюции |
Вперед >>> Макроэволюция |
- ХРОМИС КРАСАВЕЦ
- 4. Первичная зрительная кора
- 200. Как изменяется температура с глубиной?
- Бездонные черные дыры
- Млечник обыкновенный, Гладыш
- Откуда пошли названия созвездий?
- Глава 23. Прямоходящие человекообразные обезьяны
- 7.3.6. Трофические связи
- Как образовались звезды?
- 1.2. Основные типы и свойства трансграничных территорий
- Элемент со странностями
- ПЫТКА В ЧЕСТЬ РОЖДЕНИЯ СЫНА