Книга: Происхождение жизни. От туманности до клетки

Цианосульфидный протометаболизм

<<< Назад
Вперед >>>

Цианосульфидный протометаболизм

При всей важности результатов лаборатории Сазерленда и в этих путях синтеза есть к чему придраться. Во-первых, для них требуется последовательное добавление разных исходных веществ: сначала смешать гликольальдегид и цианамид, потом добавить глицеральдегид, а затем – цианоацетилен. Если смешать все сразу, то нуклеотиды практически не получаются. Во-вторых, не очень понятно, откуда взять простейшие сахара (гликольальдегид и глицеральдегид). В реакции Бутлерова они образуются из формальдегида, но тут же превращаются в более сложные сахара. Способов остановки реакции Бутлерова на глицеральдегиде пока неизвестно. В-третьих, для получения нуклеотидов нужны в больших количествах цианамид и цианоацетилен, а в атмосферных процессах они образуются в гораздо меньшем количестве, чем цианид.

Сотрудники Сазерленда обратили внимание на другие пути получения сахаров. В химии давно известен синтез Килиани – Фишера, в котором цианид реагирует с формальдегидом, давая гликольнитрил (рис. 7.7). На второй стадии гликольнитрил восстанавливается, а на третьей реагирует с водой, выделяя аммиак, и превращается в гликольальдегид. Аналогично гликольальдегид может присоединить следующую молекулу цианида и превратиться в глицеральдегид и далее в более сложные сахара. Первая и третья реакции этого синтеза легко происходят в водном растворе без дополнительных условий, а вот на втором шаге нужны водород и определенный катализатор: палладий на сульфате бария (Pd/BaSO4). Просто палладий и другие металлы, катализирующие восстановление водородом (платина, никель), не подходят, так как вызывают побочные реакции восстановления, приводящие к образованию этиленгликоля и этаноламина. Понятно, что на древней Земле не было палладия на сульфате бария, поэтому синтез Килиани – Фишера долго не привлекал внимания специалистов по предбиологической химии. Однако недавно удалось найти подходящий восстановитель, который наверняка был на древней Земле: это сероводород (Ritson and Sutherland, 2013). В качестве катализатора при этом используются цианидные комплексы меди. Под действием ультрафиолета эти комплексы отнимают электроны от сероводорода (который превращается в серу) и передают их другим молекулам, в том числе гликольнитрилу. Механизм реакции получается сложнее, чем обычный синтез Килиани – Фишера, и кроме сахаров (гликольальдегида и глицеральдегида) получаются побочные продукты, прежде всего аминокислоты: глицин, аланин, серин и треонин.


Оказалось, что по условиям эта реакция совместима с синтезом нуклеотидов из простых сахаров, цианамида и цианоацетилена. В присутствии фосфата удается получить нуклеотиды, начиная с цианида и формальдегида, а также возникает дополнительное направление побочных реакций: часть глицеральдегида превращается в диоксиацетон, который восстанавливается до ацетона. Ацетон, присоединяя дополнительные молекулы цианида, дает в итоге еще две аминокислоты, входящие в состав белков, – валин и лейцин (рис. 7.8).



Для получения концентрированных растворов цианамида и цианоацетилена ученые обратили внимание на свойства цианидных комплексов железа. При добавлении синильной кислоты к воде, содержащей соли железа и других металлов, образуются гексацианоферраты, которые при упаривании раствора выпадают в осадок: K4Fe(CN)6 (желтая кровяная соль), Na4Fe(CN)6, Ca2Fe(CN)6 и Mg2Fe(CN)6. При нагревании до 500–800 °C гексацианоферраты разлагаются, давая различные продукты: карбид железа, азот, цианиды калия и натрия. Гексацианоферрат магния при таком разложении дает нитрид магния (Mg3N2), а гексацианоферрат кальция – карбид и цианамид кальция (CaC2 и CaNCN). Если эти продукты прокаливания залить водой, то KCN и NaCN растворяются, соединения кальция разлагаются, давая цианамид NH2CN и ацетилен C2H2, а нитрид магния разлагается с выделением аммиака. При добавлении солей меди ацетилен соединяется с цианидом, давая цианоацетилен (HC ? C–C ? N) и акрилонитрил (H2C = CH – C ? N). На древней Земле такие процессы могли происходить, например, в окрестностях вулкана: сначала синильная кислота из дождей и вулканических газов попадает в озеро с обогащенной железом геотермальной водой, и там накапливаются гексацианоферраты. Потом повышение активности вулкана выпаривает озеро, и разные соли откладываются на его дне кольцами: менее растворимые выпадают в осадок первыми и откладываются ближе к исходным берегам, а более растворимые остаются на самом глубоком месте озерной котловины. Потом вулканическое тепло прокаливает осадки гексацианоферратов, а когда вулкан успокоится и высохшее озеро вновь зальет геотермальной водой с сероводородом, по запекшейся корке солей потекут ручьи из концентрированных растворов цианида и цианамида, в которых пойдет синтез нуклеотидов.

На основе акрилонитрила и цианоацетилена в этих условиях получаются не только нуклеотиды, но и дополнительные аминокислоты. Акрилонитрил присоединяет аммиак и превращается в бета-аминопропионитрил, который через несколько стадий дает пролин и аргинин. Цианоацетилен с помощью меди может присоединить еще молекулу цианида и превратиться в малеонитрил (№ 48). Из малеонитрила образуются аспарагиновая кислота и глутаминовая кислота. Таким образом, из четырех простых веществ (синильная кислота, сероводород, цианамид и ацетилен) получаются не только все четыре нуклеотида, но и десять из двадцати белковых аминокислот. Что еще интереснее, в этой сложной сети реакций практически не образуется никаких веществ, которые не встречались бы в современных клетках, – в отличие от аппарата Миллера и реакции Бутлерова! Значит, цианосульфидные реакции могли определить исходный набор нуклеотидов и аминокислот, из которых строились первые живые системы.

<<< Назад
Вперед >>>

Генерация: 5.411. Запросов К БД/Cache: 3 / 0
Вверх Вниз