Книга: Логика случая. О природе и происхождении биологической эволюции
Рибозимы и мир РНК
<<< Назад Изучение эволюции белковых доменов дает аргументы в пользу сложного мира РНК: взгляд сверху вниз |
Вперед >>> Природа и происхождение генетического кода |
Рибозимы и мир РНК
Центральная догма молекулярной биологии (Crick, 1970) постулирует, что информация передается от ДНК к белку посредством РНК (Фрэнсис Крик дополнил ее возможностью обратной передачи информации от РНК к ДНК после открытия обратной транскрипции):
Очевидно, размышляя о происхождении первых живых форм, мы оказываемся перед вопросом типа «курица или яйцо»: что появилось первым – ДНК или белок? ген или его продукт? В такой постановке вопрос, естественно, неразрешим из-за парадокса Дарвина – Эйгена: чтобы реплицировать и транскрибировать ДНК, нужны функционально активные белки, но производство этих белков, в свою очередь, требует точной репликации, транскрипции и трансляции нуклеиновых кислот. Если строго следовать центральной догме, невозможно вообразить, каким мог быть начальный материал для цикла Дарвина – Эйгена. Даже вынесение ДНК из триады и постулат о том, что изначальный генетический материал состоял только из РНК (и сведение, таким образом, триады к диаде), хоть и является ценной идеей (см. следующую главу), но не помогает разрешить парадокс. Чтобы эволюция в сторону усложнения началась, система должна каким-то образом вступить в цикл Дарвина – Эйгена до того, как установится связь между РНК-матрицами (информационной частью системы) и белком (исполнительной частью).
Блестяще остроумное и, по-видимому, единственное решение было предложено независимо К. Вёзе, Ф. Криком и Л. Оргелом в 1967–1968 годах (Crick, 1968; Orgel, 1968; Woese, 1967): ни курица, ни яйцо, но то, что между ними, – одна РНК. Уникальным свойством РНК, делающим ее вероятным и, скорее всего, наилучшим кандидатом на главную роль в древнейшей репликационной системе, является ее способность сочетать в себе информационные и каталитические функции. Было очень заманчиво предположить, что первые репликаторные системы – первые формы жизни – состояли только из молекул РНК, действующих и как носители информации (геномы и гены), и как катализаторы различных реакций, включая в том числе синтез их самих и их предшественников. Это смелое предположение получило блестящее подтверждение с открытием и последующим изучением рибозимов (ферментов РНК): Томас Чек и коллеги в 1982 году открыли автокаталитическое расщепление интрона рРНК инфузории Tetrahymena, а в 1983 году Сидней Альтман и коллеги показали, что РНКаза P является рибозимом. Следом за этими эпохальными открытиями изучение рибозимов выросло в огромную самостоятельную и растущую область исследований (Cech, 2002; Doudna and Cech, 2002; Fedor and Williamson, 2005).
Открытие рибозимов сделало чрезвычайно привлекательной идею о том, что первые репликаторы целиком состояли из молекул РНК, катализировавших свою собственную репликацию. В 1986 году Уолтер Гилберт ввел термин «мир РНК» для обозначения этой гипотетической стадии эволюции жизни, и гипотеза мира РНК завоевала широкую популярность, став ведущей и самой популярной гипотезой о ранних стадиях эволюции. (Различные аспекты гипотезы мира РНК и подтверждающие ее данные основательно рассмотрены в одноименной книге, вышедшей в 2010 г. в 4-м издании: Atkins et al., 2010.)
Популярность гипотезы мира РНК еще более стимулировала исследования рибозимов, нацеленные на поиск разнообразных каталитических активностей РНК – в первую очередь, пожалуй, активности РНК-репликазы. Заслуживает внимания тот факт, что главным экспериментальным подходом к получению рибозимов с желаемой активностью является отбор in vitro, который, во всяком случае концептуально, воспроизводит дарвиновскую эволюцию, происходившую, как полагают, в первичном мире РНК (Ellington et al., 2009). Эксперименты по направленному отбору строятся таким образом, чтобы в случайной популяции последовательностей РНК амплифицировались только те из них, которые катализируют заданную реакцию. В многостадийных экспериментах по отбору были получены рибозимы, катализирующие весьма обширное разнообразие реакций.
В табл. 12-1 перечислены некоторые из наиболее биологически значимых реакций, катализируемых рибозимами. Примечательно, что все три элементарные реакции, необходимые для трансляции, – (1) активация аминокислот через образование аминоацил-АМФ, (2) аминоацилирование (т)РНК и (3) транспептидация (реакция пептидилтрансферазы) – успешно моделируются с помощью рибозимов. Реакция авто-аминоацилирования, принципиально важная для возникновения первичных РНК-адаптеров (аналог АРСазы в мире РНК), была отобрана in vitro с относительной легкостью. Поразительно, что лучшие из полученных рибозимов катализируют эту реакцию с большей скоростью и специфичностью, чем соответствующие АРСазы, и что были отобраны очень короткие олигонуклеотиды, обладающие этой активностью (Turk et al., 2010).
Таблица 12-1. Некоторые из функций рибозимов, потенциально важные для биологической эволюции.
По понятным причинам, основные усилия сосредоточились на подтверждении полимеризации нуклеотидов и, в конечном счете, репликации РНК, катализируемой рибозимами, то есть ключевых процессов в гипотетическом первичном мире РНК. Результаты экспериментов, нацеленных на создание рибозимов-репликаз, до сих пор неоднозначны (Cheng and Unrau, 2010). Получены рибозимы, способные достраивать праймер после его гибридизации с матрицей (Johnston et al., 2001); на начальном этапе такие рибозимы могли действовать только путем спаривания части молекулы рибозима с матрицей, но затем были получены, путем дополнительного отбора, и общие рибозимы-полимеразы данного класса (Lincoln and Joyce, 2009). Результаты последнего прорыва в области рибозимов-полимераз были опубликованы в то время, когда окончательно редактировалась настоящая глава: рибозим-эндонуклеаза получена с использованием рибозима-полимеразы, в свою очередь построенной рекомбинацией двух уже существующих рибозимов, что в принципе представляет собой правдоподобный путь добиологической эволюции (Wochner et al., 2011). Невзирая на серьезные успехи, полученные до сих пор рибозимы-полимеразы все еще весьма далеки от достаточно точных (в смысле порога Эйгена) процессивных репликаз, способных катализировать репликацию экзогенных матриц и самих себя. Ферменты с такими свойствами, по всей видимости, являются conditio sine qua non для развития гипотетического мира РНК. Кроме того, даже имеющиеся рибозимы с ограниченными способностями РНК-полимераз довольно сложны: их молекулы состоят из приблизительно 200 нуклеотидов, и эволюция таких молекул в добиологических условиях была бы нетривиальной.
Концепция мира РНК опирается не только на каталитические способности рибозимов. Процессы мира РНК и по сей день просматриваются в живых формах, пусть и многократно затмеваемые разнообразием белков с их каталитическими и структурными функциями (Doudna and Cech, 2002). Реакции, катализируемые рибозимами, пусть малочисленные и гораздо менее разнообразные, чем катализируемые белковыми ферментами, имеют важнейшее значение в современных клетках. Первейшим примером естественных рибозимов является сама рибосома, где ключевая пептидилтрансферазная реакция катализируется рРНК большой субъединицы без непосредственного участия белков (Beringer and Rodnina, 2007)[128]. В вездесущем ферменте процессинга тРНК, РНКазе Р, собственно катализатором служит молекула РНК, в то время как белковые субъединицы играют роль кофакторов, стабилизирующих каталитическую РНК и способствующих реакции (McClain et al., 2010). Далее, самосплайсирующиеся интроны групп I и II, широко распространенные у бактерий и в органеллах растений, грибов и простейших, являются рибозимами, катализирующими свое собственное вырезание из РНК-транскриптов, часто при помощи особых белков, именуемых матуразами (см. также гл. 7). Практически не подлежит сомнению, что бесчисленное множество эукариотических сплайсосомных интронов, а также малые ядерные (мя)РНК, составляющие активные элементы эукариотических сплайсосом, произошли от интронов группы II (см. гл. 7). Таким образом, сплайсинг, вездесущий процесс в эукариотических клетках, основан на рибозимной каталитической реакции.
В мельчайших из известных инфекционных агентов, вироидах, катализируемые рибозимами реакции непосредственно участвуют в репликации: хотя полимеризация нуклеотидов и катализируется белковой полимеразой, процессинг промежуточных продуктов репликации с образованиме зрелых геномов катализируется рибозимом, содержащимся в самой молекуле РНК вироида (Flores et al., 2004). Существование и центральное значение в современных клетках этих (и, вероятно, других, все еще неоткрытых) РНК-катализируемых реакций предполагает большую роль РНК-катализаторов в начале эволюции жизни. Все эти свидетельства, конечно, далеки от доказательства реальности древнего мира РНК, как он был определен ранее – сообщество разнообразных РНК, обладающих разнообразными каталитическими свойствами и реплицируемых рибозимами-полимеразами. Тем не менее свойства современных РНК, в первую очередь рибозимная активность, полностью совместимы с таким эволюционным этапом и значительно увеличивают его привлекательность. В частности, тот основополагающий факт, что пептидилтрансферазная реакция в рибосоме катализируется рибозимом, наводит на мысль о том, что система трансляции возникла как рибозимная машина.
Таким образом, три независимые группы свидетельств сходятся в поддержку важнейшей роли РНК – а именно РНК-катализа – на самых ранних этапах истории жизни и совместимы с реальностью сложного древнего мира РНК, который Вёзе, Крик и Оргел постулировали вначале на чисто логических основаниях.
1. Сравнительный анализ белковых компонентов системы трансляции и их гомологов, выполняющих другие функции, наводит на мысль о том, что широкое разнообразие белкового мира сформировалось, когда система трансляции состояла в основном из РНК.
2. В современных клетках действует несколько классов рибозимов, и их свойства совместимы с гипотезой о том, что они являются реликтами первичного мира РНК.
3. Хотя рибозимы и менее универсальны, чем белковые ферменты, и обычно значительно уступают им в каталитической активности, они, как было показано в экспериментах по отбору, способны катализировать значительное разнообразие реакций, включая и те, что играют центральную роль в эволюции трансляции (см. табл. 12-1).
Невзирая на все эти аргументы в ее поддержку, гипотеза мира РНК сталкивается с серьезными трудностями. Во-первых, несмотря на все приложенные усилия, отобранные in vitro рибозимы оказываются (относительно) слабыми катализаторами большинства реакций; отсутствие эффективных процессивных рибозимов-полимераз представляется особенно тяжелой проблемой, но имеется также и серьезная нехватка других видов активности, в частности необходимых для синтеза нуклеотидов. Нужно признать, что было бы нереалистичным ожидать от экспериментов по эволюции рибозимов in vitro легкого воспроизведения фактической сложности изначального мира РНК. Хотя эти эксперименты и ставят на службу мощь отбора, они, очевидно, выполняются в совершенно другом временном масштабе и в условиях, неспособных точно воспроизвести (неизвестные) условия в начале жизни (мы обсудим потенциальные экологические ниши для возникновения жизни ниже в этой главе).
Исследование Э. Сатмари и сотрудников дает количественную оценку сложности, которая может быть достигнута в мире РНК, и точности репликации, необходимой для достижения этого уровня сложности (Kun et al., 2005). Оценка, основанная на функциональной устойчивости к мутациям хорошо известных рибозимов, показывает, что при частоте ошибок 10-3 на нуклеотид за цикл репликазы (это примерно соответствует точности РНК-зависимой РНК-полимеразы современных вирусов) РНК-«организм», состоящий из примерно сотни «генов» размером с тРНК (80 нуклеотидов), будет устойчивым. Такой уровень точности всего лишь на порядок выше, чем у самых точных рибозимов-полимераз, полученных отбором in vitro. Данную величину можно положить приближенной верхней границей сложности ансамблей совместно развивающихся «эгоистичных кооператоров», которые могли представлять собой «организмы» мира РНК.
Даже в лучшем случае мир РНК вряд ли обладал потенциалом эволюции дальше чрезвычайно простых «организмов». Для достижения большей сложности потребовались изобретение трансляции и «белковый прорыв» (перенос основной каталитической активности на белки). Однако силы отбора, лежащие в основе возникновения системы трансляции в мире РНК, остаются неясными, и реконструкция пути к трансляции крайне сложна. Это отсутствие ясности в отношении непрерывности эволюции от мира РНК к РНК-белковому миру является второй по значимости проблемой гипотезы мира РНК, возможно даже более существенной, чем ограниченный каталитический арсенал и (как правило) низкая эффективность рибозимов. Далее мы обсудим возможные пути выхода из этой ситуации.
<<< Назад Изучение эволюции белковых доменов дает аргументы в пользу сложного мира РНК: взгляд сверху вниз |
Вперед >>> Природа и происхождение генетического кода |
- Изучение эволюции белковых доменов дает аргументы в пользу сложного мира РНК: взгляд сверху вниз
- Глава 10 Витамины, аминокислоты и пептиды в РНК-мире
- РНК копирует себя: проблемы и ограничения
- Копирование РНК путем крупноблочной сборки
- Аминокислоты и пептиды в мире РНК
- Рибозимы осваивают обмен веществ