Книга: Генетика за 1 час

2.1. Начало генетики. Грегор Мендель: открытия великие, но незамеченные

<<< Назад
Вперед >>>

2.1. Начало генетики. Грегор Мендель: открытия великие, но незамеченные

Итак, к концу XIX в. ученые были как никогда близки к тому чтобы открыть все тайны наследственности: были выделены и описаны практически все элементы клетки, предположена связь хромосом с передачей признаков от родителей потомству Но закономерности в проявлении тех или иных признаков по-прежнему не просматривались. По крайней мере, официально. Интересный исторический казус: когда Август Вейсман, Вальтер Флемминг и Генрих Вальдейер проводили свои исследования и пытались найти ответы на вопросы, связанные с наследственностью, августинский монах Грегор Мендель в городе Брюнне (в то время Австрийская империя; в настоящее время – город Брно, Чехия) давно уже вывел главные правила наследования разнообразных признаков, применив для установления закономерностей математические методы. Но его открытия, ставшие мостиком от гипотез XIX в. к современной генетике, при жизни исследователя рассмотрены и оценены не были… Впрочем, обо всем по порядку.

Грегор Мендель родился в 1822 г. в Моравии, происходил из бедной крестьянской семьи и при крещении получил имя Иоганн. С раннего детства мальчик проявлял способности к обучению и интерес к наукам, но из-за тяжелого материального положения семейства не смог в юности завершить образование и в 1843 г. постригся в монахи Августинского монастыря святого Фомы, взяв монашеское имя Грегор. Здесь он получил возможность изучать биологию, которую страстно любил. Казалось бы, странное занятие для монаха. Ничего удивительного: августинцы уделяли особое внимание образованию и просвещению – в первую очередь, конечно, религиозному, но монастырь в Брюнне шел в ногу со временем. Там была великолепная библиотека, лаборатории, обширные коллекции научных приборов и главное – прекрасные сады и оранжереи, в которых Мендель проводил большую часть времени. Заинтересовавшись вопросами наследственности, он обратился к работам своих предшественников. Отдавая должное их трудам, Грегор Мендель справедливо замечал, что каких-либо закономерностей в скрещивании и проявлении у гибридов тех или иных признаков они так и не нашли.

Есть ли вообще какой-либо общий закон, устанавливающий, какими именно будут цветы у гибридных роз или душистого горошка? Можно ли спрогнозировать, какой масти будут котята от кота и кошки, различающихся по цвету и структуре шерсти? Наконец, можно ли математически просчитать, в каком поколении и с какой частотой проявится тот или иной признак?

Для опытов Грегор Мендель по примеру Томаса Эндрю Найта избрал самый обычный садовый, или посевной горох (Pisum sativum). Это самоопыляемое растение: в обычных условиях пыльца с тычинок цветка переносится на пестик того же цветка (в отличие от перекрестного опыления, при котором пыльца должна переноситься с одного растения на другое).

В генетике к самоопыляемым относят растения, у которых опыление происходит между разными цветками одного и того же экземпляра.

Исследователь счел, что такая особенность обеспечит чистоту опыта, ведь при самоопылении семена и плоды получают определенные признаки только от одного растения. Следовательно, опыляя горох искусственно, перенося пыльцу с одного экземпляра на другой, можно сократить число непредвиденных случайностей и целенаправленно использовать только те растения, которые интересуют нас как подопытные. Кроме того, горох обладает набором разнообразных и хорошо узнаваемых признаков: цвет семян, форма стручка, высота стебля. Взаимно опыляя горох с резко отличающимися признаками, Мендель намеревался, получив гибридные образцы, вывести закономерности наследования. Он начал с того, что распределил выбранные им растения по следующим признакам:

• по длине (высоте) стебля: высокие либо низкорослые;

• по расположению цветков: вдоль стебля или в основном на его верхушке;

• по цвету стручков (желтые или зеленые);

• по форме семян (гладкая либо морщинистая);

• по цвету семян (желтый или зеленый) и так далее.

Затем были восемь лет опытов, несколько десятков тысяч исходных растений и гибридов, сложные вычисления и статистические таблицы. Грегор Мендель скрещивал растения с резко различающимися признаками: например, выбирал родителей, у одного из которых семена были гладкие, а у другого – морщинистые.

В первую очередь он обратил внимание на то, что в первом поколении гибриды проявляли в той или иной своей части признаки только одного родителя. При скрещивании растения с желтыми семенами и растения с зелеными семенами у гибрида не было желто-зеленых либо пестрых семян – их цвет полностью наследовался от одного родителя. Таким образом, Мендель обогатил лексикон будущих генетиков важными терминами: признаки, которые проявлялись в первом гибридном поколении, он назвал доминантными; а те, которые отошли на второй план и не отразились в первом поколении гибридов, – рецессивными.



Грегор Мендель (фото 1884 г.)

Интересных результатов он добился при скрещивании высоких и низкорослых растений гороха. Потомство в первом поколении было сплошь высоким. Но когда эти растения самоопылялись и давали семена, следующее поколение уже делилось таким образом: одно низкое растение на три высоких. Внешний вид последующих поколений и соотношение высоких и низких экземпляров тоже можно было математически спрогнозировать. Такое же соотношение наблюдалось и в сочетаниях прочих признаков.

Большинство современных генетиков убеждены, что Грегор Мендель предвосхитил понятие гена. Лишь спустя много лет ген получит определение – участок ДНК, отвечающий за наследственность. Но не будем забегать наперед: разговор о ДНК нам еще предстоит. А Мендель не использовал понятие «ген», этот термин появится много позже. Он писал о «факторах», или «задатках», утверждая, что тот или иной признак (цвет, размер, форма) растения определяется двумя факторами, один из которых содержится в мужской, а другой – в женской половой клетке. Растения, появившиеся в результате слияния клеток, несущих в себе одинаковые «задатки», исследователь именовал константными (впоследствии их назовут гомозиготными).

Для упрощения работы Грегор Мендель обозначал доминантные признаки в паре растений прописными буквами (А, В, С), а рецессивные – строчными (а, b, с). Следовательно, при описании гибридов можно было составить простые формулы, наглядно демонстрирующие сочетания признаков и их «проявляемость». Менделю сослужило добрую службу то, что некоторое время он увлекался математикой и преподавал ее в школе. Склонность к систематизации и уверенное обращение с цифровыми и буквенными обозначениями помогли ему сделать то, что до него исследователям было недоступно: выявить и описать закономерности наследственности. Сейчас эти закономерности известны как законы Менделя. Давайте ознакомимся с ними подробнее.


Первое и второе гибридные поколения в опытах Менделя с низким и высокорослым горохом

1. Закон единообразия гибридов первого поколения (он же закон доминирования признаков) гласит, что при скрещении двух константных (или, как сказали бы сейчас, гомозиготных) растений все первое поколение гибридов будет полностью подобно одному из родителей – на первый план выйдут доминантные признаки. Правда, известны случаи неполного доминирования: когда доминантный признак не может полностью подавить более слабый, рецессивный. Помните, ранее мы описывали предположение ряда ученых XVIII–XIX вв., которые утверждали, что по логике вещей гибрид всегда должен представлять собой нечто среднее между родительскими экземплярами? В ряде случаев это возможно, например, у некоторых видов цветов при скрещивании растений с красными и белыми цветами в первом поколении гибридов цветы будут розовыми. То есть доминантный красный цвет лепестков не смог полностью подавить рецессивный белый. Могут быть и другие частные особенности в законе единообразия, но наша задача – дать читателю самые общие сведения о генетике и ее истории.

2. Закон расщепления признаков: если скрещивать между собой гибриды первого поколения, то во втором поколении признаки обеих родительских форм проявятся в определенном соотношении.

3. Закон независимого наследования признаков: если скрещиваются две особи, которые отличаются друг от друга двумя парами признаков, факторы и связанные с ними признаки будут наследоваться и комбинироваться независимо друг от друга. Так, Мендель скрестил горох с гладкими желтыми зернами и горох с морщинистыми зелеными зернами. При этом желтый цвет и гладкость зерен были доминантными признаками. Первое поколение гибридов было полностью представлено растениями с доминантными признаками – у гороха были желтые гладкие зерна. После самоопыления гибридов были получены новые растения: у девяти были желтые гладкие зерна, у трех – желтые морщинистые, у трех – зеленые гладкие и одно растение обладало зелеными морщинистыми зернами.

Конечно, впоследствии законы Менделя уточнялись в соответствии с новыми научными данными. Например, стало известно, что если за тот или иной признаку растения или организма отвечает не один ген, а несколько, то формы наследования будут более сложными и составными. Но все же Грегор Мендель был первопроходцем в области закономерностей наследования, и в его честь учение о наследственности позже было названо менделизмом.

Почему же его исследования при жизни не получили признания? Известно, что в 1865 г. Грегор Мендель выступил с докладом в Обществе естествоиспытателей и опубликовал статью «Опыты по гибридизации растений», не снискавшую особого успеха в научной среде. Скорее всего, открытия брюннского монаха не получили развития в первую очередь потому, что он сам вскоре разочаровался в их результатах. Мендель приступил к скрещиванию некоторых видов растений, изначально имевших особенности в способах размножения. Таким образом, закономерности, которые он вывел во время работы с горохом, не получили подтверждения – неприятный итог почти десятка лет напряженной работы! Вскоре Грегор Мендель стал аббатом, и новые обязанности заставили его полностью забросить биологические исследования. О его работах вспомнили только в начале XX в., когда несколько ученых «открыли» законы Менделя и подтвердили его разработки. Сам биолог-августинец скончался в 1884 г., задолго до триумфального возвращения его идей в научную среду…

<<< Назад
Вперед >>>

Генерация: 4.119. Запросов К БД/Cache: 3 / 1
Вверх Вниз