Книга: По следам бесконечности

Развенчание парадоксов

<<< Назад
Вперед >>>

Развенчание парадоксов

Общая теория относительности и теория расширяющейся Вселенной были не только принципиально новым шагом в понимании геометрии мира. Они освободили космологию от назревавших в «классические времена» неразрешимых парадоксов, в чем-то напоминающих знаменитые парадоксы теории множеств.

Еще в конце прошлого столетия немецкий ученый Зеелигер пришел к довольно любопытному выводу, вошедшему в историю науки под названием «гравитационного парадокса».

Как известно, согласно закону всемирного тяготения Ньютона все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Но если Вселенная бесконечна и однородна, то, как следует из довольно простого подсчета, энергия взаимодействия любого тела со всеми остальными массами Вселенной окажется бесконечной, а сила его взаимодействия с этими массами — неопределенной.

Грубо говоря, в бесконечной Вселенной на каждую частицу должна действовать равнодействующая двух бесконечно больших сил притяжения. А разность двух бесконечностей и есть неопределенность.

Но, очевидно, в такой Вселенной не было бы никакой однозначности и, по существу, в ней не действовали бы никакие законы природы.

Однако ничего подобного в действительности не наблюдается.

Еще в XIX веке была предпринята попытка устранить гравитационный парадокс с помощью предположения о том, что ньютоновский закон тяготения справедлив лишь для сравнительно малых космических областей, а с увеличением масштаба сила тяготения ослабевает значительно быстрей, чем этого требует формула Ньютона. С этой целью к ней добавляли специальный дополнительный множитель.

Но все дело в том, что эта поправка к закону тяготения вводилась чисто умозрительно, без какого-либо экспериментального основания.

— Опыт показывает, — заметил по- этому поводу известный советский физик Давид Альбертович Франк-Каменецкий, — что такая примитивная коррекция привычных представлений для применения к повой области никогда еще в истории науки не приводила к успеху.

Еще одно противоречие между реальным положением вещей и ньютоновской бесконечной однородной Вселенной с бесконечным количеством звезд подметил в свое время швейцарский астроном Жан Филипп Шезо.

— Если количество звезд во Вселенной бесконечно, — задумался Шезо, — то почему все небо не сверкает, как поверхность единой звезды?

Сам он находил на этот вполне законный вопрос единственный ответ: скорее всего свет дальних звезд заслоняют от нас облака космической пыли.

Дальнейшая история этого знаменитого парадокса связана с именем астронома-любителя (что случается не так уж часто), богатого и преуспевающего бременского врача Генриха Ольберса.

Вновь поставив, и притом независимо от Шезо, волновавший швейцарского ученого вопрос о том, почему ночное небо черное, Ольберс пришел к выводу, что и пылевые облака не спасают положения.

Проблема, над которой размышляли Шезо и Ольберс, сыграла немалую роль в развитии научных представлений о Вселенной. Она вошла в историю астрономии под названием фотометрического парадокса. Состоит он, строго говоря, в следующем.

Если в бесконечной Вселенной равномерно рассеяны звезды, которые в среднем излучают приблизительно одинаковое количество света, то, независимо от того, сгруппированы они в галактики или нет, они должны покрыть своими дисками всю небесную сферу. И куда бы мы ни направили свой взор, он почти наверняка рано или поздно натолкнется на какую-нибудь звезду.

Известно, что интенсивность видимого света звезд уменьшается пропорционально квадрату расстояния. Но это уменьшение в такой же степени компенсируется увеличением числа звезд, попадающих в поле нашего зрения.

Иными словами, каждый участок звездного неба, казалось бы, должен светиться как участок диска Солнца. Со всех сторон на нас должен обрушиваться ослепительный жаркий поток света с температурой около 6 тысяч градусов, почти в 200 тысяч раз превосходящий поток солнечного света. Между тем ночное небо черное и холодное. В чем же тут дело?

Любопытно отметить, что еще Аристотель — об этом сообщает в своих «Диалогах» Джордано Бруно — описывал ситуацию, весьма сходную с фотометрическим парадоксом. Если бы мир был бесконечным, рассуждал Аристотель, то должны были бы существовать «бесконечные частные огни». И хотя каждый из них был бы конечным, тот огонь, который явился бы, в результате должен был быть бесконечным. Именно на этом основании Аристотель и приходил к заключению о конечности мира.

После изысканий Шезо и Ольберса, в соответствии с их первоначальной идеей, были предприняты довольно многочисленные попытки устранить фотометрический парадокс ссылкой на поглощение света рассеянной межзвездной материей. Но в 1973 году советский астроном академик Василий Григорьевич Фесенков показал, что и это не спасает положения. Межзвездная материя не столько поглощает свет звезд, сколько рассеивает его. Таким образом, ситуация оказалась еще более сложной.

Еще одна попытка устранить фотометрический, а заодно и гравитационный парадокс, была предпринята Шарлье, который выдвинул идею об иерархическом строении Вселенной. «Вселенная Шарлье» — это совокупность вложенных друг в друга систем все более высокого порядка: звезды — звездные скопления — скопления звездных скоплений и т. д. И чем выше порядок системы, тем сильнее она разрежена.

Такая схема действительно устраняла парадоксы, по картина Вселенной получалась при этом явно искусственной: в центре чрезвычайно плотное скопление звезд, а с увеличением расстояния звезд все меньше и меньше.

Наконец, третий парадокс возник при попытке применить к стационарной Вселенной законы термодинамики — науки о тепловых процессах. Поскольку такая Вселенная существует бесконечно долгое время, то в ней давно должно было бы наступить полное термодинамическое равновесие — «тепловая смерть». Все тепло должно было бы равномерно распределиться между всеми телами, и всякие тепловые процессы полностью прекратились бы.

Таким образом, два парадокса отрицали бесконечность однородной стационарной Вселенной в пространстве, а третий — ее бесконечность во времени.

Но если парадоксы теории множеств не получили своего решения и по сей день, то судьба космологических парадоксов оказалась совершенно иной.

С появлением общей теории относительности сам собой отпал гравитационный парадокс Зеелигера — в этой теории он просто не возникает.

В свою очередь, теория расширяющейся Вселенной наполовину «расправилась» с термодинамическим парадоксом. Если Метагалактика существует «всего» несколько миллиардов лет, то тепловое равновесие в ней просто еще не успело установиться. И хотя это соображение отнюдь не снимает вопроса о «тепловой смерти» Вселенной вообще (в будущем), по отношению к прошлому оно устраняет все противоречия.

Что же касается будущего, то эту задачу исследовал американский физик Р. Толмен. Ему удалось показать, что благодаря наличию гравитации даже в конечной Вселенной не может существовать состояния с максимальной энтропией.

Примерно к такому же выводу с позиций статистической физики пришел и советский ученый профессор К. П. Станюкович.

Нашел себе объяснение в теории расширения Метагалактики и фотометрический парадокс.

Поскольку галактики разбегаются, в их спектрах, как мы уже знаем, происходит красное смещение спектральных линий. В результате частота, а значит, энергия каждого фотона уменьшаются. Ведь красное смещение — это сдвиг электромагнитного излучения в сторону более длинных волн. А чем больше длина волны, тем меньшую энергию несет с собой излучение. И чем дальше галактика, тем больше красное смещение, а значит, тем сильнее ослабляется энергия каждого приходящего к нам фотона.

Помимо этого, непрерывное увеличение расстояния между Землей и удаляющейся галактикой приводит к тому, что каждый следующий фотон вынужден преодолевать несколько больший путь, чем предыдущий. По этой причине фотоны попадают в приемник реже, чем они испускаются источником. Следовательно, уменьшается и число приходящих в единицу времени фотонов, что также приводит к понижению количества приходящей в единицу времени энергии. Вследствие красного смещения происходит не только перемещение излучения в область более низких частот, но и ослабление его энергии.

Следовательно, красное смещение ослабляет излучение каждой галактики. И тем сильнее, чем дальше она от нас находится.

Именно поэтому ночное небо остается черным.

Таким образом, теория расширяющейся Вселенной, возникшая как одно из следствий общей теории относительности, явилась очередным шагом в познании Вселенной, в том числе ее геометрических свойств.

Но это был не просто новый вариант решения проблемы, а принципиально новый подход к ней. Если раньше ученые искали окончательного ответа на вопрос о конечности или бесконечности Вселенной, исходя из тех или иных умозрительных или теоретических соображений, то теория расширяющейся Вселенной предоставила решение этого вопроса фактам, которые надо было получить в результате изучения реального мира.

Но и новая космология однородной изотропной расширяющейся Вселенной ставила вопрос о бесконечности по принципу «или — или…». Или Вселенная бесконечна, или — конечна. Одно исключает другое. И, следовательно, задача науки заключается в том, чтобы выяснить, какая из этих двух возможностей реализуется в природе.

Но уже А. Фридман понимал, что подобная постановка вопроса является сильно упрощенной, даже наивной.

<<< Назад
Вперед >>>

Генерация: 5.878. Запросов К БД/Cache: 3 / 1
Вверх Вниз